Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-05T21:28:50.582Z Has data issue: false hasContentIssue false

Antimicrobial Activity of TiO2 Coatings Prepared by Direct Thermophoretic Deposition of Flame-Synthesized Nanoparticles

Published online by Cambridge University Press:  27 December 2016

Gianluigi De Falco*
Affiliation:
Istituto di Ricerche sulla Combustione, CNR, Piazzale Vincenzo Tecchio 80, 80125, Napoli, Italy Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Piazzale Vincenzo Tecchio 80, 80125, Napoli, Italy
Amalia Porta
Affiliation:
Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084, Fisciano (Salerno), Italy
Pasquale Del Gaudio
Affiliation:
Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084, Fisciano (Salerno), Italy
Mario Commodo
Affiliation:
Istituto di Ricerche sulla Combustione, CNR, Piazzale Vincenzo Tecchio 80, 80125, Napoli, Italy
Patrizia Minutolo
Affiliation:
Istituto di Ricerche sulla Combustione, CNR, Piazzale Vincenzo Tecchio 80, 80125, Napoli, Italy
Andrea D’Anna
Affiliation:
Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Piazzale Vincenzo Tecchio 80, 80125, Napoli, Italy
*
Get access

Abstract

This study reports the development of a one-step method for the production of antimicrobial protective coatings for aluminum surfaces with titania nanoparticles. An aerosol flame synthesis system was used to produce monodisperse, ultra-fine TiO2 nanoparticles, which were directly deposited by thermophoresis onto plates of aluminum alloy by means of a rotating disc. Fuel-lean reactor conditions were used to synthesize pure anatase nanoparticles of 3.5 nm in diameter. Substrates were mounted onto the rotating disc that repetitively passes through the flame. Convection due to the rotational motion cooled the substrates, on which particles were deposited as films by thermophoresis. Such a system allowed to obtain submicron coatings of different thickness, by varying the total time of deposition. The antimicrobial activity of TiO2 coatings was tested against the Gram positive bacterium Staphylococcus aureus. To determine the inhibition of biofilms formation, microbes were plated on TiO2 coatings and a semi-quantitative colorimetric assay was performed using crystal violet. The tests showed that the TiO2 coating obtained with tdes=10 s inhibits up to 70-80% Staphylococcus aureus biofilm formation, and the inhibition of biofilms formation was confirmed by means of Scanning Electron Microscopy observation. Also, the antimicrobial properties of the coatings was enhanced by irradiating the samples in the UV region. The results of the present work are promising for using titania films as protective coatings for applications where an antimicrobial activity is required.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bellanger, A.P., Reboux, G., Roussel, S., Grenouillet, F., Didier-Scherer, E., Dalphin, J.C. and Millon, L., Lett. Appl. Microbiol. 49, 260266 (2009).Google Scholar
Verdier, T., Coutand, M., Bertron, A. and Roques, C., Build. Environ. 80, 136149 (2014).Google Scholar
Kaeberlein, T., Lewis, K. and Epstein, S.S., Science 296, 11271129 (2002).Google Scholar
Campoccia, D., Montanaro, L. and Arciola, C.R., Biomaterials 34, 85338554 (2013).Google Scholar
Weir, A., Westerhoff, P., Fabricius, L., Hristovski, K. and von Goetz, N., Environ. Sci. Technol. 46, 22422250 (2012).CrossRefGoogle Scholar
Armelao, L., Barreca, D., Bottaro, G., Gasparotto, A., Maccato, C., Maragno, C., Tondello, E., Štangar, U.L., Bergant, M. and Mahne, D., Nanotechnology 18, 375709 (2007).Google Scholar
Li, S., Ren, Y., Biswas, P. and Tse, S.D., Prog. Energy Combust. Sci. 55, 159 (2016).Google Scholar
Batchelor, G.K. and Shen, C., J. Colloid. Interface Sci. 107, 2137 (1985).Google Scholar
Thimsen, E., Rastgar, N. and Biswas, P., J. Phys. Chem. C. 112, 41344140 (2008).Google Scholar
Nikraz, S., Phares, D.J. and Wang, H., J. Phys. Chem. C. 116, 53425351 (2012).Google Scholar
Liberini, M., De Falco, G., Scherillo, F., Astarita, A., Commodo, M., Minutolo, P., D’Anna, A. and Squillace, A., Thin Solid Films 609, 5361 (2016).CrossRefGoogle Scholar
Memarzadeh, S., Tolmachoff, E. D., Phares, D. J. and Wang, H., Proc. Combust. Inst. 33, 19171924 (2011).Google Scholar
Tolmachoff, E. D., Abid, A. D., Phares, D. J., Campbell, C. S. and Wang, H., Proc. Combust. Inst. 32, 18391845 (2009).CrossRefGoogle Scholar
Kho, Y.K., Teoh, W.Y., Mädler, L. and Amal, R., Chem. Eng. Sci. 66, 24092416 (2011).Google Scholar