Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-05T05:00:50.375Z Has data issue: false hasContentIssue false

Anomalous Number Fluctuation Noise in Localized Transition Metal Dichalcogenide Layers: Generalization of McWhorter’s Mechanism

Published online by Cambridge University Press:  15 January 2018

Kimberly Hsieh*
Affiliation:
Department of Physics, Indian Institute of Science, Bangalore560012, India
Subhamoy Ghatak
Affiliation:
Department of Physics, Indian Institute of Science, Bangalore560012, India
Vidya Kochat
Affiliation:
Department of Material Science and NanoEngineering, Rice University, Houston, Texas77005, United States
Xiang Zhang
Affiliation:
Department of Material Science and NanoEngineering, Rice University, Houston, Texas77005, United States
Yongji Gong
Affiliation:
Department of Material Science and NanoEngineering, Rice University, Houston, Texas77005, United States
Chandra Sekhar Tiwary
Affiliation:
Department of Material Science and NanoEngineering, Rice University, Houston, Texas77005, United States
Sanjeev Kaushal
Affiliation:
Tokyo Electron Ltd., Akasaka Biz Tower, 3-1 Akasaka 5-Chome, Minato-ku, Tokyo107-6325, Japan
Pulickel M. Ajayan
Affiliation:
Department of Material Science and NanoEngineering, Rice University, Houston, Texas77005, United States
Arindam Ghosh
Affiliation:
Department of Physics, Indian Institute of Science, Bangalore560012, India Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore560012, India
*
Get access

Abstract

The mechanism of electrical noise in transition metal dichalcogenides (TMDCs) has mostly been attributed to charge carrier fluctuations between the oxide traps and the conducting channel, in accordance with the McWhorter model. However, the original McWhorter model was formulated for diffusive transport with conducting carriers having extended electronic wave functions. Our work serves to generalize the McWhorter mechanism to include strongly localized systems such as the TMDC family and provides an explanation for the unusual exponential behavior of noise magnitude with temperature.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wu, J., Schmidt, H., Amara, K. K., Xu, X., Eda, G., Özyilmaz, B. Nano Lett. 14, 27302734 (2014).Google Scholar
He, G., Ghosh, K., Singisetti, U., Ramamoorthy, H., Somphonsane, R., Bohra, G., Matsunaga, M., Higuchi, A., Aoki, N., Najmaei, S., Gong, Y., Zhang, X., Vajtai, R., Ajayan, P. M., Bird, J. P. Nano Lett. 15, 50525058 (2015).Google Scholar
Ghatak, S., Mukherjee, S., Jain, M., Sarma, D. D., Ghosh, A. APL Mater. 2, 092515 (2014).Google Scholar
Sangwan, V. K., Arnold, H. N., Jariwala, D., Marks, T. J., Lauhon, L. J., Hersam, M. C Nano Lett. 13, 43514355 (2013).Google Scholar
Sharma, D., Amani, M., Motayed, A., Shah, P. B., Birdwell, A. G., Najmaei, S., Ajayan, P. M., Lou, J., Dubey, M., Li, Q., Davydov, A. V. Nanotechnology 25, 155702 (2014).Google Scholar
Paul, T., Ghatak, S., Ghosh, A. Nanotechnology 27, 125706 (2016).Google Scholar
Najmaei, S., Amani, M., Chin, M. L., Liu, Z., Birdwell, A. G., O’Regan, T. P., Ajayan, P. M., Dubey, M., J. Lou ACS Nano 8, 79307937 (2014).Google Scholar
Ghatak, S., Pal, A. N., Ghosh, A. ACS Nano 5, 77077712 (2011).Google Scholar
Hsieh, K., Kochat, V., Zhang, X., Gong, Y., Tiwary, C. S., Ajayan, P. M., Ghosh, A. Nano Lett. 17, 54525457 (2017).Google Scholar
Ghatak, S., Ghosh, A. Appl. Phys. Lett 103, 122103 (2013).CrossRefGoogle Scholar
Karnatak, P., Goswami, S., Kochat, V., Pal, A. N., Ghosh, A. Phys. Rev. Lett. 113, 026601 (2014).Google Scholar
Shamim, S., Mahapatra, S., Scappucci, G., Klesse, W. M., Simmons, M. Y., Ghosh, A. Phys. Rev. Lett. 112, 236602 (2014).CrossRefGoogle Scholar
Sahoo, A., Ha, S. D., Ramanathan, S., Ghosh, A. Phys. Rev. B: Condens. Matter Mater. Phys. 90, 085116 (2014).CrossRefGoogle Scholar
Shamim, S., Mahapatra, S., Polley, C., Simmons, M. Y., Ghosh, A. Phys. Rev. B: Condens. Matter Mater. Phys. 83, 233304 (2011).CrossRefGoogle Scholar
Pal, A. N., Ghatak, S., Kochat, V., Sneha, E. S., Sampathkumar, A., Raghavan, S., Ghosh, A. ACS Nano 5, 20752081 (2011).Google Scholar
Islam, S., Bhattacharyya, S., Kandala, A., Richardella, A., Samarth, N., Ghosh, A. Appl. Phys. Lett. 111, 062107 (2017).Google Scholar
Karnatak, P., Sai, T. P., Goswami, S., Ghatak, S., Kaushal, S., Ghosh Nat, A.. Commun. 7, 13703 (2016).Google Scholar
Bhattacharyya, S., Kandala, A., Richardella, A., Islam, S., Samarth, N., Ghosh, A. Appl. Phys. Lett. 108, 082101 (2016).Google Scholar
Kochat, V., Tiwary, C. S., Biswas, T., Ramalingam, G., Hsieh, K., Chattopadhyay, K., Raghavan, S., Jain, M., Ghosh, A. Nano Lett. 16, 562567 (2016).Google Scholar
Bhattacharyya, S., Banerjee, M., Nhalil, H., Islam, S., Dasgupta, C., Elizabeth, S., Ghosh, A. ACS Nano 9, 1252912536 (2015).Google Scholar
Karnatak, P., Paul, T., Islam, S., Ghosh, A. Adv. Phys.: X 2, 428449 (2017).Google Scholar
Shklovskii, B. I. Phys. Rev. B: Condens. Matter Mater. Phys. 67, 045201 (2003).Google Scholar