Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T04:57:09.291Z Has data issue: false hasContentIssue false

All-Inkjet-Printed Humidity Sensors for the Detection of Relative Humidity in Air and Soil—Towards the Direct Fabrication on Plant Leaves

Published online by Cambridge University Press:  31 January 2020

Walid Ait-Mammar
Affiliation:
Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, Univ. Paris Diderot, 15 rue J-A de Baïf, Cedex 13 75205 Paris, France
Samia Zrig
Affiliation:
Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, Univ. Paris Diderot, 15 rue J-A de Baïf, Cedex 13 75205 Paris, France
Nathalie Bridonneau
Affiliation:
Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, Univ. Paris Diderot, 15 rue J-A de Baïf, Cedex 13 75205 Paris, France
Vincent Noël
Affiliation:
Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, Univ. Paris Diderot, 15 rue J-A de Baïf, Cedex 13 75205 Paris, France
Eleni Stavrinidou
Affiliation:
Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74, Norrköping, Sweden
Benoît Piro
Affiliation:
Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, Univ. Paris Diderot, 15 rue J-A de Baïf, Cedex 13 75205 Paris, France
Giorgio Mattana*
Affiliation:
Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, Univ. Paris Diderot, 15 rue J-A de Baïf, Cedex 13 75205 Paris, France
*
*corresponding author: [email protected]
Get access

Abstract

We demonstrate the fabrication, by exclusive means of inkjet-printing, of capacitive relative humidity sensors on flexible, plastic substrate. These sensors can be successfully used for the measurement of relative-humidity in both air and common soil. We also show that the same technique may be used for the fabrication of the same type of sensors on the surface of the leaves of Elægnus Ebbingei (silverberry).Our results demonstrate the suitability of leaves as substrate for printed electronics and pave the way to the next generation of sensors to be used in fields such as agriculture and flower farming.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

Uzawa, H., Economic Theory and Global Warming, (Cambridge University Press, New York, 2003), p. 21.CrossRefGoogle Scholar
Dincer, I., Colpan, C.O. and Kadioglu, F., Causes, Impacts and Solutions to Global Warming, (Springer Science & Business Media, New York, 2013) p. 17.CrossRefGoogle Scholar
Peterson, T. C. et al. B., Am. Meteorol. Soc. 12, 822 (2013).Google Scholar
Wade, K. and Jennings, M., The impact of climate change on the global economy. Schroders Economics Team (2016).Google Scholar
Mortensen, L. M., Sci. Hortic. 29, 301-307 (1986).CrossRefGoogle Scholar
Arve, L. E. et al., in Abiotic Stress in Plants - Mechanisms and Adaptations, edited by Shanker, A. and Venkateswarlu, B. (IntechOpen, Rijeka, 2011) pp. 267-281.Google Scholar
Farooq, M. et al., Agron. Sustain. Dev. 29, 185-212 (2009).CrossRefGoogle Scholar
Aydinalp, C. and Cresser, M.S., American-Eurasian J. Agric. & Environ. Sci. 3, 672-676 (2008).Google Scholar
Aqeel-ur-Rehman, et al., Comp. Stand. Inter. 36, 263-270 (2014).CrossRefGoogle Scholar
Mattana, G. and Briand, D., Mater. Today 19, 88-99 (2016).CrossRefGoogle Scholar
Mattana, G. et al., Adv. Mater. Technol. 2, 1700063, (2017).CrossRefGoogle Scholar
Molina-Lopez, F. et al., Sensor Actuat. B-Chem. 166, 212-222 (2012).CrossRefGoogle Scholar
Mattana, G. et al., IEEE Sens. J. 13, 3901-3909 (2013).CrossRefGoogle Scholar
Kawahara, Y. et al., Proc. UbiComp 5-8 Sept. (2012).Google Scholar
Kim, S. et al., Proceedings of the 43rd European Microwave Conference 7-10 Oct. (2013).Google Scholar
Lee, B. M. et al. US Patent No. 5973139A (26 October 1999).Google Scholar
Sakai, Y. et al., Sensor Actuat. B-Chem. 35, 85-90 (1996).CrossRefGoogle Scholar
Carvajal, S. A. and Sánchez, C. A., Int. J. Metrol. Qual. Eng. 9, 9 (2018).CrossRefGoogle Scholar
Oprea, A. et al., Sensor Actuat. B-Chem. 132, 404-410 (2008).CrossRefGoogle Scholar
Manishev, A. V. et al., P. IEEE 92, 808-845 (2004).CrossRefGoogle Scholar
Gis Sol. 2013. The state of the soils in France. A synthesis/Groupement d’intérêt scientifique sur les sols, France, 24p.Google Scholar
Altenberend, U. et al., Sens. Actuators B Chem. 187, 280287, (2013).CrossRefGoogle Scholar
Zampetti, E. et al., Sens. Actuators B Chem. 155, 768774, (2011).CrossRefGoogle Scholar
Bedane, A. H. et al., Adsorption 20, 863 (2014).CrossRefGoogle Scholar
Ducéré, V. et al., Sens. Actuators B Chem. 106, 331334, (2005).CrossRefGoogle Scholar
Kohler, R. et al., Compos. Interface 10, 255-276, (2003).CrossRefGoogle Scholar
Bernacka-Wojcik, I. et al., Small 15, 1902189, (2019).CrossRefGoogle Scholar
Li, X. et al., Catena 60, 227-237 (2205).CrossRefGoogle Scholar
Thompson, R. B. et al., Soil Sci. Soc. Am. J., 71, 1647-1657 (2007).CrossRefGoogle Scholar
Amer, A. M. A., Wetting and Wettability (BoD – Books on Demand, 2015), p. 4.Google Scholar