Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T04:53:21.205Z Has data issue: false hasContentIssue false

Adsorption and Light Absorption Properties of 2-Anthroic Acid on Titania: a Density Functional Theory – Time-Dependent Density Functional Theory Study

Published online by Cambridge University Press:  11 April 2016

Sergei Manzhos*
Affiliation:
Department of Mechanical Engineering, National University of Singapore, Block EA #07-08, 9 Engineering Drive 1, Singapore 117576
Konstantinos Kotsis
Affiliation:
Department of Mechanical Engineering, National University of Singapore, Block EA #07-08, 9 Engineering Drive 1, Singapore 117576
*
Get access

Abstract

The adsorption 2-anthroic acid on titania has been shown to result in an interfacial charge transfer band, which makes this a promising interface for dye-sensitized solar cells with direct injection. Here, we model the adsorption of 2-anthroic acid on a TiO2 nanocluster exhibiting a (101)-like interface and compute light absorption properties of this system using for the first time a hybrid functional. The band alignment and the formation of interfacial charge transfer bands proposed in previous experimental and lower-level computational works are confirmed.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Govardhan Reddy, K., Deepak, T. G., Anjusree, G. S., Thomas, S., Vadukumpully, S., Subramanian, K. R. V., Nair, S. V., Sreekumaran Nair, A., Phys. Chem. Chem. Phys. 16, 6838 (2014).Google Scholar
Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L., Pettersson, H., Chem. Rev. 110, 6595 (2010)Google Scholar
Manzhos, S., Segawa, H., Yamashita, K., Chem. Phys. Lett. 504, 230 (2011)CrossRefGoogle Scholar
Manzhos, S., Jono, R., Yamashita, K., Segawa, H., J. Phys. Chem. C 115, 21487 (2011)CrossRefGoogle Scholar
Jono, R., Fujisawa, J., Segawa, H., Yamashita, K., J. Phys. Chem. Lett. 2, 1167 (2011)Google Scholar
Duncan, W. R., Prezhdo, O. V., Annu. Rev. Phys. Chem. 58, 143 (2007)Google Scholar
An, B.-K., Hu, W., Burn, P. L., Meredith, P., J. Phys. Chem. C 114, 17964 (2010)Google Scholar
Tae, E. L., Le, S. H., Lee, J. K., Yoo, S. S., Kang, E. J., Yoon, K. B., J. Phys. Chem. B 109, 22513 (2005)CrossRefGoogle Scholar
Li, S.-C., Wang, J., Jacobson, P., Gong, X.-Q., Selloni, A., Diebold, U., J. Am. Chem. Soc. 131, 980 (2009)Google Scholar
Persson, P., Bergstrom, R., Lunell, S., J. Phys. Chem. B 104, 10348 (2000)Google Scholar
Duncan, W. R., Prezhdo, O. V., J. Phys. Chem. B 109, 365 (2005)CrossRefGoogle Scholar
Fujisawa, J., Nagata, M., Chem. Phys. Lett. 619, 180 (2015)CrossRefGoogle Scholar
Fujisawa, J., Phys. Chem. Chem. Phys. 17, 12228 (2015)Google Scholar
Hohenberg, P., Kohn, W., Phys. Rev. 136, B864 (1964)Google Scholar
Kohn, W., Sham, L. J., Phys. Rev. 140, A1133 (1965)CrossRefGoogle Scholar
Manzhos, S., Chem. Phys. Lett. 643, 16 (2016)Google Scholar
Elstner, M., Porezag, D., Jungnickel, G., Elsner, J., Haugk, M., Frauenheim, T., Suhai, S., Seifert, G., Phys. Rev. B 58, 7260 (1998)CrossRefGoogle Scholar
Perdew, J. P., Burke, K., Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996)Google Scholar
Bauernschmitt, R., Ahlrichs, R., Chem. Phys. Lett. 256, 454 (1996)CrossRefGoogle Scholar
Casida, M. E., Jamorski, C., Casida, K. C., Salahub, D. R., J. Chem. Phys. 108, 4439 (1998)Google Scholar
Stratmann, R. E., Scuseria, G. E., Frisch, M. J., J. Chem. Phys. 109, 8218 (1998)CrossRefGoogle Scholar
Frisch, M. J. et al. ., Gaussian 09, Gaussian, Inc.: Wallingford, CT, USA, 2009 Google Scholar
Dunning, T. H. Jr., Hay, P. J., Modern Theoretical Chemistry, Ed. Schaefer, H.F. III, Vol. 3 128 (Plenum, New York, 1977)Google Scholar
Check, C. E., Faust, T. O., Bailey, J. M., Wright, B. J., Gilbert, T. M., Sunderlin, L. S., J. Phys. Chem. A 105, 8111 (2001)Google Scholar
Becke, A. D., J. Chem. Phys. 98, 5648 (1993).Google Scholar
Lee, C., Yang, W., Parr, R. G., Phys. Rev. B 37, 785 (1988)Google Scholar
Chai, J.-D., Head-Gordon, M., Phys. Chem. Chem. Phys. 10, 6615 (2008)Google Scholar
Namuangruk, S., Fukuda, R., Ehara, M., Meeprasert, J., Khanasa, T., Morada, S., Kaewin, T., Jungsuttiwong, S., Sudyoadsuk, T., Promarak, V., J. Phys. Chem. C 116, 25653 (2012)Google Scholar
Peach, M. J. G., Benfield, P., Helgaker, T., Tozer, D. J., J. Chem. Phys. 128, 044118 (2008)Google Scholar
Tu, W. H., Tan, Y. Y., Rege, O., Manzhos, S., J. Mol. Model. 21, 67 (2015)Google Scholar