Article contents
Zn2+- Controlled Crystallization and Microstructure in K-Li-Mg-B-Si-Al-F Glass
Published online by Cambridge University Press: 10 July 2018
Abstract text:
The crystallization of (9-X) K2O-1Li2O-12MgO-10B2O3-40SiO2-16Al2O3-12MgF2-X PbO/BaO/ZnO (X =0/5) composition (wt.%) were studied by means of dilatometry, DSC, XRD, SEM and microhardness analysis. Density of base K-Li-Mg-B-Si-Al-F glass (2.59 g.cm–3) is found to be increased on addition of the network modifier oxides PbO, BaO and ZnO content. Addition of Pb2+, Ba2+ and Zn2+ furthermore increased the glass transition temperature (Tg.). A characteristic exothermic hump is found to be appeared in DSC thermograph at the temperature range 800-950°C; and that is ascribed to the formation of crystalline phase fluorophlogopite mica, KMg3(AlSi3O10)F2. Opaque glass-ceramics were prepared from K-Li-Mg-B-Si-Al-F glasses (with and without containing PbO, BaO and ZnO content) by controlled heat-treatment at 1000°C. Interlocked type microstructure combined of flake like fluorophlogopite mica crystals is obtained in ZnO-containing K-Li-Mg-B-Si-Al-F glass-ceramic; and such microstructural pattern is ascribed to cause large thermal-expansion (>11.5×10-6/K, 50-800°C).Vickers Microhardness of base glass-ceramic (5.12 GPa) is increased when contains ZnO (5.26 GPa). ZnO-containing boroaluminosilicate glass-ceramic is, hence, considered with potential interest as they can exhibit the microcrack resistivity in high temperature recycling operation (like SOFC).
- Type
- Articles
- Information
- Copyright
- Copyright © Materials Research Society 2018
References
- 12
- Cited by