Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T13:19:09.917Z Has data issue: false hasContentIssue false

Titanium-Carbide Formation at Defective Curved Graphene-Titanium Interfaces

Published online by Cambridge University Press:  28 January 2018

Alexandre F. Fonseca*
Affiliation:
Applied Physics Department, Institute of Physics “Gleb Wataghin”, University of Campinas – UNICAMP, Campinas, São Paulo, CEP13083-859, Brazil.
Tao Liang
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA16801, United States.
Difan Zhang
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA16801, United States. Department of Materials Science and Engineering, University of Florida, Gainesville, FL32611-6400, United States.
Kamal Choudhary
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL32611-6400, United States.
Simon R. Phillpot
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL32611-6400, United States.
Susan B. Sinnott
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA16801, United States.
*
Get access

Abstract

Physical and chemical properties of graphene-metal interfaces have been largely examined with the objective of producing nanostructured carbon-based electronic devices. Although electronic properties are key to such devices, appropriate structural, thermal and mechanical properties are important for device performance as well. One of the most studied is the graphene-titanium (G-Ti) interface. Titanium is a low density, high strength versatile metal that can form alloys with desirable properties for applications ranging from aerospace to medicine. Small clusters and thin films of titanium deposited on graphene have also been examined. However, while some experiments show that thin films of titanium on graphene can be removed without damaging graphene hexagonal structure, others reported the formation of titanium-carbide (TiC) at G-Ti interfaces. In a previous work [ACS Appl. Mater. Interfaces, 2017, 9 (38), pp 33288-33297], we have shown that pristine G-Ti interfaces are resilient to large thermal fluctuations even when G-Ti structures lie on curved or kinked substrates. Here, using classical molecular dynamics with the third-generation Charge Optimized Many Body (COMB3) potential, we show that di-interstitial defective G-Ti structures on a copper substrate with a relatively large curvature kink, present signs of TiC formation. This result might help explain the different experimental results mentioned above.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Novoselov, K. S., Jiang, D., Schedin, F., Booth, T. J., Khotkevich, V. V., Morozov, S. V., Geim, A. K., Proc. Natl. Acad. Sci. U.S.A. 102, 10451 (2005).Google Scholar
Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. and Geim, A. K., Rev. Mod. Phys. 81, 109 (2009).Google Scholar
Balog, R., Jørgensen, B., Nilsson, L., Andersen, M., Rienks, E., Bianchi, M., Fanetti, M., Lægsgaard, E., Baraldi, A., Lizzit, S., Sljivancanin, Z., Besenbacher, F., Hammer, B., Pedersen, T. G., Hofmann, P., and Hornekær, L., Nat. Mater. 9, 315 (2010).CrossRefGoogle Scholar
Smith, J. T., Franklin, A. D., Farmer, D. B. and Dimitrakopoulos, C. D., ACS Nano 7, 3661 (2013).CrossRefGoogle Scholar
Leong, W. S., Gong, H. and Thong, J. T. L., ACS Nano 8, 994 (2014).Google Scholar
Politou, M., Asselberghs, I., Radu, I., Conard, T., Richard, O., Lee, C. S., Martens, K., Sayan, S., Huyghebaert, C., Tokei, Z., De Gendt, S. and Heyns, M., Appl. Phys. Lett. 107, 153104 (2015).Google Scholar
Khomyakov, P. A., Giovannetti, G., Rusu, P. C., Brocks, G., van den Brink, J. and Kelly, P. J., Phys. Rev. B 79, 195425 (2009).Google Scholar
Hsu, A. L., Koch, R. J., Ong, M. T., Fang, W., Hofmann, M., Kim, K. K., Seyller, T., Dresselhaus, M. S., Reed, E. J., Kong, J. and Palacios, T., ACS Nano 8, 7704 (2014).Google Scholar
Miao, M., Shi, H., Wang, Q. and Liu, Y., Phys. Chem. Chem. Phys. 16, 5634 (2014).Google Scholar
Mashoff, T., Takamura, M., Tanabe, S., Hibino, H., Beltram, F. and Heun, S., Appl. Phys. Lett. 103, 013903 (2013).Google Scholar
Iqbal, M. W., Singh, A. K., Iqbal, M. Z. and Eom, J., J. Phys.: Condens. Matter 24, 335301 (2012).Google Scholar
Matruglio, A., Nappini, S., Naumenko, D., Magnano, E., Bondino, F., Lazzarino, M. and Dal Zilio, S., Carbon 103, 305 (2016).CrossRefGoogle Scholar
Gong, C., McDonnell, S., Qin, X., Azcatl, A., Dong, H., Chabal, Y. J., Cho, K. and Wallace, Robert M., ACS Nano 8, 642 (2014).Google Scholar
Yang, W. –Z., Huang, W. –M., Wang, Z. –F., Shang, F. –J., Huang, W. and Zhang, B. –Y., Acta Metall. Sin. 29, 707 (2016).CrossRefGoogle Scholar
Liang, T., Shan, T. –R. Cheng, Y. –T., Devine, B. D. Noordhoek, M., Li, Y., Lu, Z., Phillpot, S. R., Sinnott, S. B., Mat. Sci. and Eng. R 74, 255 (2013).Google Scholar
Liang, T., Ashton, M., Choudhary, K., Zhang, D., Fonseca, A. F., Revard, B. C., Hennig, R. G., Phillpot, S. R. and Sinnott, S. B., J. Phys. Chem. C 120, 12530 (2016).Google Scholar
Fonseca, A. F., Liang, T., Zhang, D., Choudhary, K., Phillpot, S. R. and Sinnott, S. B., ACS Appl. Mater. Interfaces 9, 33288 (2017).CrossRefGoogle ScholarPubMed
Zhang, D., Dutzer, M. R., Liang, T., Fonseca, A. F., Wu, Y., Walton, K. S., Sholl, D. S., Farmahini, A. H., Bhatia, S. K. and Sinnott, S. B., Carbon 111, 741 (2017).Google Scholar
Leyssale, J. and Vignoles, G. L. A., J. Phys. Chem. C 118, 8200 (2014).Google Scholar
Robertson, A. W., He, K., Kirkland, A. I. and Warner, J. H., Nano Lett. 14, 908 (2014).Google Scholar
LAMMPS - Molecular Dynamics Simulator. Available at http://lammps.sandia.gov (accessed 09 December 2017).Google Scholar
COMB3 in LAMMPS. Available at https://research.matse.psu.edu/sinnott/software (accessed 09 December 2017).Google Scholar
Devine, B., Shan, T. –R., Cheng, Y. –T., McGaughey, A. J. H., Lee, M., Phillpot, S. R. and Sinnott, S. B., Phys. Rev. B 84, 125308 (2011).Google Scholar
Liang, T., Cheng, Y. –T., Nie, X., Luo, W., Asthagiri, A., Janik, M. J., Andrews, E., Flake, J. and Sinnott, S. B., Catal. Commun. 52, 84 (2014).Google Scholar
Schneider, T. and Stoll, E., Phys. Rev. B 17, 1302 (1978).Google Scholar