Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-25T18:22:50.725Z Has data issue: false hasContentIssue false

Time-resolved Optical Properties of SiNW Oriented in <211> Crystallographic Direction

Published online by Cambridge University Press:  13 June 2019

Fatima
Affiliation:
Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota58108, USA
Aaron Forde
Affiliation:
Department of Materials Science and Nanotechnology, North Dakota State University, Fargo, North Dakota58102, United States
Talgat M. Inerbaev
Affiliation:
Sobolev Institute of Geology and Mineralogy, SB RAS, Novosibirsk, 630090, Russian Federation L.N. Gumilyov Eurasian National University, Astana010008, Kazakhstan
Nuri Oncel
Affiliation:
Department of Physics & Astrophysics, University of North Dakota, Grand Forks, North Dakota58202, USA
Dmitri S. Kilin*
Affiliation:
Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota58108, USA
*
Get access

Abstract

Silicon nanowires (SiNWs) show unique optoelectronic properties such as band gap, radiative and nonradiative relaxations. In this research, the optoelectronic properties of <211> SiNW are calculated by combining time-dependent density matrix methodology. Description of photo-excited dynamics processes is enabled by computing “on–the–fly” nonadiabatic couplings (NAC) between electronic and nuclear degrees of freedom using density functional theory (DFT). The dynamics of electronic degrees of freedom is propagated by the reduced density matrix with Redfield equation of motion. Oscillator strengths are used to compute radiative relaxation and to generate time resolved photoluminescence (PL) spectrum. Analysis of the simulated nonradiative decay shows that high-energy photoexcitation relaxes to the band gap edge on the order of 1 ps. We also simulate time-resolved emission spectra of the <211> SiNW that reveals optical emissions above the optical band gap. These emission features are attributed to the interband transitions. The results of this study can be useful for the material choice for optoelectronic applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES:

Priolo, F., Gregorkiewicz, T., Galli, M. and Krauss, T. F., Nature nanotechnology 9 (1), 19 (2014).CrossRefGoogle Scholar
Ng, M.-F., Zhou, L., Yang, S.-W., Sim, L. Y., Tan, V. B. and Wu, P., Physical Review B 76 (15), 155435 (2007).CrossRefGoogle Scholar
Peercy, P. S., Nature 406 (6799), 1023 (2000).CrossRefGoogle Scholar
Cui, Y., Lauhon, L. J., Gudiksen, M. S., Wang, J. and Lieber, C. M., Applied Physics Letters 78 (15), 2214-2216 (2001).CrossRefGoogle Scholar
Ahmed, H., van Tooren, M. J. L., Justice, J., Harik, R., Kidane, A. and Reynolds, A. P., Journal of Thermoplastic Composite Materials, 089270571878567 (2018).Google Scholar
Ahmed, H., Ahmed, R., Indaleeb, M. M. and Banerjee, S., Journal of Physics Communications 2 (11), 115001 (2018).CrossRefGoogle Scholar
Indaleeb, M. M., Banerjee, S., Ahmed, H., Saadatzi, M. and Ahmed, R., Physical Review B 99 (2) (2019).CrossRefGoogle Scholar
Ahmed, H., Indaleeb, M. M., Saadatzi, M., Sain, T., Ghosh, S. and Banerjee, S., Investigation of wave trapping and attenuation phenomenon for a high symmetry interlocking micro-structure composite metamaterial. (SPIE, 2019).CrossRefGoogle Scholar
Yu, Q., He, H., Gan, L. and Ye, Z., RSC Advances 5 (98), 80526-80529 (2015).CrossRefGoogle Scholar
Valenta, J., Bruhn, B. and Linnros, J., Nano letters 11 (7), 3003-3009 (2011).CrossRefGoogle Scholar
Sivakov, V. A., Voigt, F., Berger, A., Bauer, G. and Christiansen, S. H., Physical Review B 82 (12), 125446 (2010).CrossRefGoogle Scholar
Mu, Z., Yu, H., Zhang, M., Wu, A., Qi, G., Chu, P. K., An, Z., Di, Z. and Wang, X., Nano letters 17 (3), 1552-1558 (2017).CrossRefGoogle Scholar
Chern, W., Hsu, K., Chun, I. S., Azeredo, B. P. d., Ahmed, N., Kim, K.-H., Zuo, J.-m., Fang, N., Ferreira, P. and Li, X., Nano letters 10 (5), 1582-1588 (2010).CrossRefGoogle Scholar
Vogel, J., Inerbaev, T., Oncel, N. and Kilin, D., MRS Advances 3 (59), 3477-3482 (2018).Google Scholar
Fatima, , Vogel, D. J., Han, Y., Inerbaev, T. M., Oncel, N. and Kilin, D. S., Molecular Physics, 1-10 (2018).Google Scholar
Fatima, , Han, Y., Vogel, D. J., Inerbaev, T. M., Oncel, N., Hobbie, E. K. and Kilin, D. S., The Journal of Physical Chemistry C 123 (12), 7457-7466 (2019).CrossRefGoogle Scholar
Redfield, A. G., IBM Journal of Research and Development 1 (1), 19-31 (1957).CrossRefGoogle Scholar
Kilin, D. S. and Micha, D. A., The Journal of Physical Chemistry Letters 1 (7), 1073-1077 (2010).CrossRefGoogle Scholar
Han, Y., Micha, D. A. and Kilin, D. S., Molecular Physics 113 (3-4), 327-335 (2015).CrossRefGoogle Scholar
Kilina, S., Kilin, D. and Tretiak, S., Chemical reviews 115 (12), 5929-5978 (2015).CrossRefGoogle Scholar
Hohenberg, P. and Kohn, W., Physical review 136 (3B), B864 (1964).CrossRefGoogle Scholar
Kresse, G., Phys. Rev. B 54, 11169 (1996).CrossRefGoogle Scholar
Kohn, W., Phys. Rev. 140, A1133 (1965).CrossRefGoogle Scholar
Paulsen, R. T. and Kilin, D. S., MRS Online Proceedings Library Archive 1787, 21-25 (2015).CrossRefGoogle Scholar
Perdew, J. P., Burke, K. and Ernzerhof, M., Physical review letters 77 (18), 3865 (1996).CrossRefGoogle Scholar
Zepeda, M. and Oncel, N., Thin Solid Films 623, 135-137 (2017).Google Scholar
Nicholls, D., Fatima, , Çakır, D. and Oncel, N., The Journal of Physical Chemistry C 123 (12), 7225-7229 (2019).CrossRefGoogle Scholar
Fatima, , Oguz, I. Can, Çakır, D., Hossain, S., Mohottige, R., Gulseren, O. and Oncel, N., Journal of Applied Physics 120 (9), 095303 (2016).CrossRefGoogle Scholar
Vogel, D. J. and Kilin, D. S., The Journal of Physical Chemistry C 119 (50), 27954-27964 (2015).CrossRefGoogle Scholar
Vogel, D. J., Kryjevski, A., Inerbaev, T. and Kilin, D. S., The Journal of Physical Chemistry Letters 8 (13), 3032-3039 (2017).CrossRefGoogle Scholar
Chen, J., Schmitz, A., Inerbaev, T., Meng, Q., Kilina, S., Tretiak, S. and Kilin, D. S., The Journal of Physical Chemistry Letters 4 (17), 2906-2913 (2013).CrossRefGoogle Scholar