Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T05:09:24.650Z Has data issue: false hasContentIssue false

Time-dependent Local and Average Structural Evolution of δ-phase 239Pu-Ga Alloys

Published online by Cambridge University Press:  05 August 2016

Alice I. Smith*
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87525, U.S.A.
Katharine L. Page
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87525, U.S.A. Materials Physics and Applications, Los Alamos National Laboratory, Los Alamos, NM 87545, U.S.A. Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 U.S.A.
Joan E. Siewenie
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87525, U.S.A. Materials Physics and Applications, Los Alamos National Laboratory, Los Alamos, NM 87545, U.S.A. Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 U.S.A.
Adrian S. Losko
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87525, U.S.A. Materials Physics and Applications, Los Alamos National Laboratory, Los Alamos, NM 87545, U.S.A. Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 U.S.A. Department of Nuclear Engineering, University of California Berkeley, Berkeley, CA 94720, U.S.A.
Sven C. Vogel
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87525, U.S.A.
Olivier A. Gourdon
Affiliation:
Materials Physics and Applications, Los Alamos National Laboratory, Los Alamos, NM 87545, U.S.A.
Scott Richmond
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87525, U.S.A.
Tarik A. Saleh
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87525, U.S.A.
Michael Ramos
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87525, U.S.A.
Daniel S. Schwartz
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87525, U.S.A.
*
Get access

Abstract

Plutonium metal is a very unusual element, exhibiting six allotropes at ambient pressure, between room temperature and its melting point, a complicated phase diagram, and a complex electronic structure. Many phases of plutonium metal are unstable with changes in temperature, pressure, chemical additions, or time. This strongly affects structure and properties, and becomes of high importance, particularly when considering effects on structural integrity over long periods of time [1]. This paper presents a time-dependent neutron total scattering study of the local and average structure of naturally aging δ-phase 239Pu-Ga alloys, together with preliminary results on neutron tomography characterization.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hecker, S.S. and Timofeeva, L., Los Alamos Science 26 (2000) 244.Google Scholar
Wolfer, W. G., Los Alamos Science 26, 2000.Google Scholar
Wirth, B.D. et al. , MRS Bull., 2001, vol. 26, p. 679 CrossRefGoogle Scholar
Morales, L.A. et al. , TMS Annual Meeting, San Diego, CA, Mar. 2003 Google Scholar
Schwartz, A.J., Wall, M.A., Zocco, T.G., Schaldach, C., and Wolfer, W.G.: Phil. Mag., 2003, Mar.Google Scholar
Chebotarev, N.T., Utkina, O.N., "Relationship between structure. and some properties of δ-Pu and γ-U alloys", Plutonium 1975 and Other Actinides, Blank, H. and Lindner, R., Amsterdam, 559 (1976)Google Scholar
Baclet, N. et al. , J. Alloys Compd. 444-445, 305309 (2007)Google Scholar
Ravat, B. et al. , J. Nucl. Materials 366 (2007) 288296 CrossRefGoogle Scholar
Richard, N. et al. , J. Alloy. Compd. 271-273 (1998) 879 Google Scholar
Faure, Ph. et al. , J. Alloy. Compd. 244 (1966) 131 Google Scholar
Allen, P. G. et al. , Phys. Rev. B 65 (2002) 214107 Google Scholar
Dormeval, M. et al. , J. Phys. IV 10 (2000) 425 Google Scholar
Thiebaut, C. et al. , J. Nuclear Materials 361 (2007) 184191 Google Scholar
LLNL, S&TR December 2012, pg. 1114 Google Scholar
Chung, B. W. et al. , J. Nuclear Materials 471 (2016) 239242 Google Scholar
Cox, L.E. et al. , Phys. Rev. B 51, 751 (1995)Google Scholar
Richard, N. et al. , J. of Alloys and Compounds 271-273 (1998) 879881 CrossRefGoogle Scholar
Allen, P. G. et al. , Phys. Rev. B 65, 214107 (2002)Google Scholar
Conradson, S. D., Appl. Spectrosc. 52, 252A (1998)Google Scholar
Nelson, E. J. et al. , Phys. Rev. B 71, 184113 (2005)Google Scholar
Conradson, S. D. et al. , Los Alamos Science, Number 26 2000, 418421 Google Scholar
Conradson, S. D. et al. , J. Synchrotron Rad. (2001) 8, 273275 Google Scholar
Conradson, S. D., Los Alamos Science, Number 26 2000, 356363 Google Scholar
Platteau, C. et al. , Journal of Nuclear Materials 385 (2009) 108111 Google Scholar
Richmond, S. et al. , IOP Conf. Ser: Mater. Sci. Eng. 9, 012036 (2010).CrossRefGoogle Scholar
Ellinger, F. H. et al. , J. Nucl. Mat., 12 (1964), 226.Google Scholar
Lawson, A.C. et al. , Philosophical Mag., 85:18, 2007-2015.Google Scholar
Ravat, B., Oudot, B., and Baclet, N., J. Nucl. Mater. 366, 288 (2007).Google Scholar
Lisowski & Schoenberg, Nuclear Instr. and Methods in Phys. Res. A 562 (2006) 910914 Google Scholar
Proffen, T., Egami, T., Billinge, S.J.L., Cheetham, A.K., Louca, D., and Parise, J., Appl. Phys. A: Mater. Sci. Process. 74, S163 (2002)Google Scholar
Wenk, H.-R., Lutteroti, L., Vogel, S. C., Nucl. Instr. Methods Phys. Res. A 515, 575 (2003)Google Scholar
Larson, A. and Dreele, R. V., “General structure analysis system (GSAS)”, Tech. Rep. (Los Alamos National Laboratory Report LAUR 86-748, 2004).Google Scholar
Peterson, P. F., Gutmann, M., Proffen, Th. and Billinge, S. J. L., J. Appl. Crystallogr., 2000, 33, 1192 Google Scholar
Farrow, C. L. et al. , J. Phys.: Condens. Matter, 2007, 19, 335219 Google Scholar
Vontobel, et al. , Physica B 385–386 (2006) 475480 Google Scholar
Vogel, C. and Priesmeyer, H. G., “Neutron production, neutron facilities and neutron instrumentation,” Reviews in Mineralogy and Geochemistry, vol. 63, pp. 2757, 2006 CrossRefGoogle Scholar