Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-25T18:14:56.175Z Has data issue: false hasContentIssue false

Temperature-dependent Optical Properties of AlN Thin Films by Spectroscopy Ellipsometry

Published online by Cambridge University Press:  13 February 2017

Yao Liu
Affiliation:
Laboratory of optoelectronic materials & detection technology, Guangxi Key Laboratory for the Relativistic Astrophysics, School of Physical Science & Technology, Guangxi University, Nanning, 530004, China Lyles School of Civil Engineering, School of Materials Engineering, Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47906, U.S.A.
Ehsan Ghafari
Affiliation:
Lyles School of Civil Engineering, School of Materials Engineering, Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47906, U.S.A.
Xiaodong Jiang
Affiliation:
Lyles School of Civil Engineering, School of Materials Engineering, Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47906, U.S.A.
Yining Feng
Affiliation:
Lyles School of Civil Engineering, School of Materials Engineering, Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47906, U.S.A.
Zhe Chuan Feng
Affiliation:
Laboratory of optoelectronic materials & detection technology, Guangxi Key Laboratory for the Relativistic Astrophysics, School of Physical Science & Technology, Guangxi University, Nanning, 530004, China
Ian Ferguson
Affiliation:
Dept. Elect. Comp. Engineering, Missouri Science and Technology, Rolla, MO 65409, U.S.A.
Na Lu*
Affiliation:
Lyles School of Civil Engineering, School of Materials Engineering, Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47906, U.S.A.
*
Get access

Abstract

In this work, temperature-dependent optical properties of a series of AlN thin films with different thickness are studied by spectroscopic ellipsometry (SE) ranging from 300 to 825K. The fitted refractive index at 300K is in good agreement with the reported by others, which confirms the high accuracy of the optical model used in this work. The degradation of the absorption properties and the decrease of the bandgap become more pronounced with temperature increases above 475K. A larger change of bandgap at elevated temperature is observed for the thinner AlN epi-layer (300nm) than the thicker ones (404nm). This can be attributed to the poor surface morphologies and crystal qualities in the thinner AlN epi-layer.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Lu, N. and Ferguson, I., Semiconductor Science and Technology 28, 074023 (2013).CrossRefGoogle Scholar
Motamedi, P. and Cadien, K., Journal of Crystal Growth 421, 4552 (2015).CrossRefGoogle Scholar
Tsubouchi, K. and Mikoshiba, N., IEEE Trans. Sonics Ultrason. 32, 634644 (1985).CrossRefGoogle Scholar
Clement, M., Vergara, L., Sangrador, J., Iborra, E. and Sanz-Hervás, A., Ultrasonics 42, 403407 (2004).CrossRefGoogle Scholar
Aubert, T., Elmazria, O., Assouar, B., Blampain, E., Hamdan, A., Genève, D., and Weber, S., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59, 9991005 (2012).CrossRefGoogle Scholar
Aubert, T., Elmazria, O., Assouar, B., Bouvot, L., and Oudich, M., Appl. Phys. Lett. 96, 203503 (2010).CrossRefGoogle Scholar
Watanabe, N., Kimoto, T., and Suda, J., J. Appl. Phys. 104, 106101 (2008).CrossRefGoogle Scholar
Sohal, S., Feng, W., Pandikunta, M., Kuryatkov, V. V., Nikishin, S. A., and Holtz, M., Journal of Applied Physics 113, 043501 (2013).CrossRefGoogle Scholar
He, H., Huang, L., Zhang, Y., Fu, Y., Shen, X., and Zeng, J., Vacuum 100, 3335 (2014).CrossRefGoogle Scholar
Nam, K. B., Li, J., Lin, J. Y., and Jiang, H. X., Appl. Phys. Lett. 85, 34893491 (2004).CrossRefGoogle Scholar
Fujiwara, H., Spectroscopic Ellipsometry Principles and Applications, 1rd ed. (John Wiley & Sons, Ltd, England, (2007) p. 136.CrossRefGoogle Scholar
Röppischer, M., Goldhahn, R., Rossbach, G., Schley, P., Cobet, C., Esser, N., Schupp, T., Lischka, K., and As, D. J., J. Appl. Phys. 106, 076104 (2009).CrossRefGoogle Scholar
Feneberg, M., Romero, M., Neuschl, B., Thonke, K., Röppischer, M., Cobet, C., Esser, N., Bickermann, M., and Goldhahn, R., Thin Solid Films 571, 503506 (2014).CrossRefGoogle Scholar
Rossbach, G., Feneberg, M., Röppischer, M., Werner, C., Esser, N., Cobet, C., Meisch, T., Thonke, K., Dadgar, A., Bläsing, J., Krost, A., Goldhahn, R., Phys. Rev. B 83, 195202 (2011).CrossRefGoogle Scholar
Liu, S., Chen, X., Zhang, C., Thin Solid Films 584, 176185 (2015).CrossRefGoogle Scholar
Das, N.S., Ghosh, P.K., Mitra, M.K., Chattopadhyay, K.K., Phys. E Low-Dimens. Syst. Nanostruct. 42, 20972102 (2010).CrossRefGoogle Scholar
Antoine-Vincent, N., Natali, F., Mihailovic, M., Vasson, A., Leymarie, J., Disseix, P., Byrne, D., Semond, F., Massies, J., J. Appl. Phys. 93, 52225226 (2003).CrossRefGoogle Scholar
Temperature dependence of the energy bandgap. Available at: http://ecee.colorado.edu/∼bart/book/eband5.htm (accessed 23/10/2016).Google Scholar