Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T13:02:03.647Z Has data issue: false hasContentIssue false

Synthesis of Colloidal Gold Nanorods with Plasmon Absorbance Wavelength in the Near Infrared Region

Published online by Cambridge University Press:  28 June 2016

Luis M. Angelats-Silva*
Affiliation:
Multidisciplinary Research Laboratory, Universidad Privada Antenor Orrego, Trujillo-Perú.
David Asmat-Campos
Affiliation:
Multidisciplinary Research Laboratory, Universidad Privada Antenor Orrego, Trujillo-Perú.
Henry León-León
Affiliation:
Multidisciplinary Research Laboratory, Universidad Privada Antenor Orrego, Trujillo-Perú.
Kevin A. Wilkinson
Affiliation:
Multidisciplinary Research Laboratory, Universidad Privada Antenor Orrego, Trujillo-Perú.
Daniel A. Sánchez-Vaca
Affiliation:
Department of Agro Industry, Universidad Nacional del Santa, Nuevo Chimbote – Perú.
Alcides López-Milla
Affiliation:
Faculty of Sciences, Universidad Nacional de Ingeniería, Lima – Perú
*
Get access

Abstract

We report preparation and characterization of colloidal gold nanorods (AuNR) with plasmon absorbance over 950 nm and an aspect ratio of 7.2 by tuning silver nitrate concentration and the CTAB/BDAC ratio during growth. Samples were analyzed by scanning transmission electron microscopy, X-ray diffraction, UV-vis absorption spectroscopy and measurement of zeta potential. Addition of 170 μM silver nitrate to the CTAB-containing reaction mixture allowed preparation of AuNRs with a maximum absorbance peak at 941.8 nm and a yield around 96%. Optimization of the BDAC/CTAB ratio allowed for a further redshift of the absorbance maximum to 954.0 nm, but with poorer yields.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Lee, J., Chatterjee, D. K., Lee, M. and Krishnan, Sunil, Cancer Letters 347 (2014) 4653.CrossRefGoogle Scholar
Philip, D., Spectrochimica Acta Part A 71 (2008) 8085.Google Scholar
Sharma, V., Park, K. and Srinivasarao, M., Mater. Sci. and Eng. R 65 (2009)138.Google Scholar
Ward, C. J., et al. , Journal of Nanomaterials, Volume 2014, Article ID 765618, 17.Google Scholar
Khan, A.K., et al. , Tropical Journal of Pharm. Research, July 2014; 13 (7): 11691177.Google Scholar
Niidome, T, Journal of Physics: Conference Series 232 (2010) 012011.Google Scholar
Green, H. N., et al. , Journal of Nanotechnology, Volume 2011, Article ID 631753, 7 pages.Google Scholar
Jabeen, F., et al. , Molecules 2014, 19, 2058020593.Google Scholar
Nikoobakht, B. and El-Sayed, M. A., Chem. Mater. 2003, 15, 19571962.Google Scholar
Khai Ling, K., et al. , Revista CENIC, Ciencias Químicas, vol. 41, 2010, pp. 111.Google Scholar
Eustis, S. and El-Sayed, M.A., J. Appl. Phys. 100, 044324 (2006).Google Scholar
Ye, et al. , Nano Lett. 2013, 13, 765771 Google Scholar
Takenaka, et al. , Physical Review E. 2009, 80, 020601.Google Scholar
Pérez-Juste, J. et al. Coordination Chemistry Reviews 2005, 249 18701901 Google Scholar
Sau, et al. , Langmuir 2004, 20, 64146420 Google Scholar
Manojlović, J. Thermal Science, 2012, 16, S631640 CrossRefGoogle Scholar
Oza, et al. , Advances in Applied Science Research, 2012, 3, 10271038 Google Scholar
Ward, et al. Journal of Nanomaterials, 2014, 2014, 765618 Google Scholar
Rostro-Kohanloo, B., et al. , Nanotechnology 20 (2009) 434005, pp 110.Google Scholar
Huang, Chien-Jung, et al. , Journal of Electrochem. Society, 153(8) D129D133 (2006).Google Scholar
Shi, W., et al. , Tang, ISRN Nanomaterials, Volume 2012, Article ID 659043, pp. 19.CrossRefGoogle Scholar
Sharma, V., Park, K. and Srinivasarao, Mohan, Mat. Sci. and Eng. R 65 (2009) 138.Google Scholar