Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T14:09:00.404Z Has data issue: false hasContentIssue false

Synthesis and characterization of La0.7Sr0.3Fe0.7Co0.3O3±δ by Sonochemistry

Published online by Cambridge University Press:  19 November 2020

De La Huerta-Hernández G. Elena*
Affiliation:
Departamento de Ciencias Básicas, UAM-A, Av. San Pablo No. 180, Azcapotzalco, Ciudad de México. C.P. 02200. México.
Castro Cisneros Iván
Affiliation:
Facultad de Ingeniería,Universidad Autónoma del Carmen, Av. Central s/n esq. Con Fracc. Mundo Maya, Ciudad del Carmen. C.P. 24115. México
Chávez Carvayar José A.
Affiliation:
Instituto de Investigaciones en Materiales, UNAM, Circuito exterior, C.U., Ciudad de México. C.P. 04510. México.
Hernández Pérez Isaías
Affiliation:
Departamento de Ciencias Básicas, UAM-A, Av. San Pablo No. 180, Azcapotzalco, Ciudad de México. C.P. 02200. México.
*
*Author for correspondence: [email protected]
Get access

Abstract

Among different possible energy sources, in the search for fossil fuel substitutes, hydrogen and fuel cells are presented as one of the most promising alternatives, with great potential, in the development of devices for the generation of clean electrical energy. Recently, lanthanum based compounds have been studied due to their interesting transport properties, which led these products to be applied as possible cathode materials in a solid oxide fuel cell. In this work, a lanthanum based material with a perovskite structure, La0.7Sr0.3Fe0.7Co0.3O3±δ (LSFC), was synthesized, from nitrates, by sonochemistry. This product was structurally characterized by powder X-ray diffraction and morphological studies were obtained by scanning electron microscopy. Results showed a nanostructured material with a crystal size in de order of 14 nm and a cubic perovskite structure with cell parameters of a = 3.8927 Å. Morphological characterization indicated a porous material formed by grains of homogeneous size, pores had an average length of 17 nm and area of 36 nm2, showing a channel shape distribution.

Type
Articles
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hagen, A., Langnickel, H., and Sun, X., “Operation of solid oxide fuel cells with alternative hydrogen carriers,” Int. J. Hydrogen Energy, vol. 44, no. 33, pp. 1838218392, 2019, doi: 10.1016/j.ijhydene.2019.05.065.CrossRefGoogle Scholar
Fernández-González, R., Molina, T., Savvin, S., Moreno, R., Makradi, A., and Núñez, P., “Characterization and fabrication of LSCF tapes,” J. Eur. Ceram. Soc., vol. 34, no. 4, pp. 953959, 2014, doi: 10.1016/j.jeurceramsoc.2013.10.023CrossRefGoogle Scholar
Mogensen, M, Kammer, K (2003), Conversion of Hydrocarbons in Solid Oxide Fuel Cells Annu Rev Mater Res 33:321CrossRefGoogle Scholar
Ortiz-Vitoriano, N, Bernuy-López, C, de Larramendi I, Ruiz, Knibbe, R, Thydén, K, Hauch, A, Holtappels, P, Rojo, T. Optimizing solid oxide fuel cell cathode processing route for intermediate temperature operation. Appl. Energy. 2013;104:984991CrossRefGoogle Scholar
Alvarado-Flores, J. and Ávalos-Rodriguez, L., “Materiales para ánodos, cátodos y electrolitos utilizados en celdas de combustible de óxido sólido (SOFC),” Rev. Mex. Física, vol. 59, pp. 6687, 2013.Google Scholar
Marinha, D., Dessemond, L., and Djurado, E., “Electrochemical investigation of oxygen reduction reaction on La 0.6Sr0.4Co0.2Fe0.8O 3-δ cathodes deposited by Electrostatic Spray Deposition,” J. Power Sources, vol. 197, pp. 8087, 2012, doi:10.1016/j.jpowsour.2011.09.049.CrossRefGoogle Scholar
Jacobs, R., Mayeshiba, T., Booske, J., and Morgan, D., “Material Discovery and Design Principles for Stable, High Activity Perovskite Cathodes for Solid Oxide Fuel Cells,” Adv. Energy Mater., vol. 8, no. 11, 2018, doi: 10.1002/aenm.201702708.CrossRefGoogle Scholar
Sun, C., Hui, R., and Roller, J.: Cathode materials for solid oxide fuel cells: A review. J Solid State Electrochem. 14, (2010).CrossRefGoogle Scholar
Appleby, A.J. and Foulkes, F.R. (1989) Fuel Cell Handbook, Van Nostrand Reinhold, New York.Google Scholar
de Souza, S., Visco, S.J. and de Jonghe, L.C. (1997) ‘Thin film solid oxide fuel cell with high performance at low temperature’, Solid State Ionics, Vol. 98, Nos. 1–2, pp. 5761.CrossRefGoogle Scholar
Minh, N.Q. (1993) ‘Ceramic fuel cells’, Journal of American Ceramic Society, Vol. 76, No. 3, pp.563588.CrossRefGoogle Scholar
Zhao, Y, Xia, C, Jia, L, Wang, Z, Li, H, Yu, J, Li, Y. Recent progress on solid oxide fuel cell: Lowering temperature and utilizing non-hydrogen fuels. Int. J. Hydrogen Energy. 2013; 38:1649816517.CrossRefGoogle Scholar
Bang, J. H. and Suslick, K. S., “Applications of ultrasound to the synthesis of nanostructured materials,” Adv. Mater., vol. 22, no. 10, pp. 10391059, 2010, doi: 10.1002/adma.200904093.CrossRefGoogle ScholarPubMed
Abazari, R., et al. , “The effect of different parameters under ultrasound irradiation for synthesis of new nanostructured Fe3O4@bio-MOF as an efficient anti-leishmanial in vitro and in vivo conditions,” Ultrason. Sonochem., vol. 43, no. December 2017, pp. 248261, 2018, doi: 10.1016/j.ultsonch.2018.01.022.CrossRefGoogle ScholarPubMed