Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T12:40:50.839Z Has data issue: false hasContentIssue false

Surfactant Assisted Self-assembly and Synthesis of Highly Uniform Spherical CL-20 Microparticles

Published online by Cambridge University Press:  22 March 2018

Kaifu Bian
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico, 87106
Leanne Alarid
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico, 87106
David Rosenberg
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico, 87106
Hongyou Fan*
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico, 87106 The University of New Mexico Center for Micro-Engineered Materials, Department of Chemical and Biological Engineering, Albuquerque, New Mexico87131
*
Get access

Abstract

Morphological control of energetic materials (EM) is highly desired because ill-defined morphology arising from variations in processing method and supplier make it impossible to reproducibly engineer their physicochemical properties. As the most powerful, non nuclear energetic material to date, 2,4,6,8,10,12-hexanitro -2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) has been the subject of significant interest for improved applications in military grade explosives. Here we report a new method for recrystallization of CL-20 from irregular bulk EMs using a surfactant assisted self-assembly process to produce uniform spherical micron-sized particles. Detailed electron microscopy studies indicate that surfactant plays a critical role in controlling CL-20 morphology. Combined X-ray diffraction and Raman spectroscopy results reveal that the resultant spherical CL-20 particles exhibit an orthorhombic β-phase crystal structure. This material is expected to display enhanced functional reproducibility due to its monodisperse nature as well as decreased shock sensitivity due to their sub-micron particle size.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ghosh, M., Venkatesan, V., Mandave, S., Banerjee, S., Sikder, N., Sikder, A.K. and Bhattacharya, B., Crystal Growth and Design 14, 5053 (2014).CrossRefGoogle Scholar
Bumpus, J. A., Adv. Phys. Chem. 175146 (2012).Google Scholar
Nielsen, A. T., Nissan, R. A., Vanderah, D. J., Coon, C. L., Gilardi, R. D., George, C. F. and Flippen-Anderson, J., J. Org. Chem. 55, 1459 (1990).CrossRefGoogle Scholar
Nair, U.R., Sivabalan, R., Gore, G.M., Geetha, M., Asthana, S.N. and Singh, H.: Hexanitrohexaazaisowurtzitane (CL-20) and CL-20-based formulations Combust. Explos. and Shock Waves. 41, 121 (2005).CrossRefGoogle Scholar
Talawar, M. B., Sivabalan, R., Anniyappan, M., Gore, G. M., Asthana, S. N. and Gandhe, B. R., Combust. Explos. and Shock Waves 43, 62 (2007).CrossRefGoogle Scholar
Liu, K., Zhang, G., Luan, J., Chen, Z., Su, P. and Shu, Y., J. Mol. Struct. 1110, 91 (2016).CrossRefGoogle Scholar
Simpson, R. L., Urtiew, P. A., Ornellas, D. L., Moody, G. L., Scribner, K. J. and Hoffman, D. M., Propellants, Explos., and Pyrotech. 22, 249 (1997).CrossRefGoogle Scholar
Xu, J., Tian, Y., Liu, Y., Zhang, H., Shu, Y. and Sun, J., J. Crst. Growth 354, 13 (2012).CrossRefGoogle Scholar
Bayat, Y., Zarandi, M., Zarei, M. A., Soleyman, R. and Zeynali, V., J. Mol. Liquids. 193, 83 (2014).CrossRefGoogle Scholar
Yang, Z., Zeng, Q., Zhou, X., Zhang, Q., Nie, F., Huang, H. and Li, H., RSC Adv. 4, 65121 (2014).CrossRefGoogle Scholar
Urbelis, J. H. and Swift, J. A., Cryst. Growth Des. 14, 1642 (2014).CrossRefGoogle Scholar
Bai, F., Sun, Z., Wu, H., Haddad, R. E., Coker, E. N., Huang, J. Y., Rodriguez, M. A. and Fan, H., Nano Lett. 11, 5196 (2011).CrossRefGoogle Scholar
Zhong, Y., Wang, Z., Zhang, R., Bai, F., Wu, H., Haddad, R. and Fan, H., ACS Nano. 8, 827 (2014).CrossRefGoogle Scholar
Goede, P., Latypov, N. V. and Ostmark, H., Propellants, Explos., and Pyrotech. 29, 205 (2004).CrossRefGoogle Scholar
Russell, T. P., Miller, P. J., Piermarini, G. J. and Block, S., J. Phys. Chem. 97, 1993 (1993).CrossRefGoogle Scholar
Guo, C., Zhang, H., Wang, X., Xu, J., Liu, Y., Liu, X., Huang, H. and Sun, J., J. Mol. Struct. 1048, 267 (2013).CrossRefGoogle Scholar
Tan, J. J., Ji, G. F., Chen, X. R. and Li, Z., Physica B: Condens. Matter. 406, 2925 (2011).CrossRefGoogle Scholar