Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T04:39:33.886Z Has data issue: false hasContentIssue false

Surface-Functionalizing Metal, Metal Oxide and Semiconductor Nanocrystals with a Multi-coordinating Polymer Platform

Published online by Cambridge University Press:  20 May 2016

Wentao Wang
Affiliation:
Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306
Xin Ji
Affiliation:
Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306
Anshika Kapur
Affiliation:
Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306
Hedi Mattoussi*
Affiliation:
Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306
*
Get access

Abstract

We introduce a new set of multifunctional metal-coordinating polymers as ligands for the surface functionalization of three different inorganic nanocrystals: luminescent quantum dots (QDs), magnetic iron oxide nanocrystals and metal gold nanoparticles. The ligand design relies on the introduction of a large but controllable number of anchoring groups, hydrophilic moieties and reactive functionalities all in the same polymer chain, via a one-step nucleophilic addition reaction. Nanocrystals capped with these polymer ligands exhibit long-term stability over a broad range of biological conditions. Furthermore, when zwitterion groups are introduced as hydrophilic blocks, this yields a compact ligand coating that allows conjugation of biomolecules to the nanocrystals via metal-histidine self-assembly. The resulting hydrophilic nanocrystals have been used to develop a few specific sensing platforms targeting soluble iron ions and cysteine.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Murray, C. B., Kagan, C. R. and Bawendi, M. G., Annu. Rev. Mater. Sci. 30, 545610 (2000).Google Scholar
Jain, P. K., Huang, X. H., El-Sayed, I. H. and El-Sayed, M. A., Acc. Chem. Res. 41, 15781586 (2008).CrossRefGoogle Scholar
Cheon, J. and Lee, J. H., Acc. Chem. Res. 41, 16301640 (2008).CrossRefGoogle Scholar
Talapin, D. V., Rogach, A. L., Kornowski, A., Haase, M. and Weller, H., Nano Lett. 1, 207211(2001).Google Scholar
Murray, C. B., Norris, D. J. and Bawendi, M. G., J. Am. Chem. Soc. 115, 87068715 (1993).Google Scholar
Peng, Z. A. and Peng, X. G., J. Am. Chem. Soc. 123, 183184 (2001).CrossRefGoogle Scholar
Dabbousi, B. O., RodriguezViejo, J., Mikulec, F. V., Heine, J. R., Mattoussi, H., Ober, R., Jensen, K. F. and Bawendi, M. G., J. Phys. Chem. B 101, 94639475 (1997).Google Scholar
Sapsford, K. E., Algar, W. R., Berti, L., Gemmill, K. B., Casey, B. J., Oh, E., Stewart, M. H. and Medintz, I. L., Chem. Rev. 113, 19042074 (2013).Google Scholar
Howes, P. D., Chandrawati, R. and Stevens, M. M., Science 346, 1247390 (2014).Google Scholar
Mattoussi, H., Palui, G. and Na, H. B., Adv. Drug Deliver. Rev. 64, 138166 (2012).Google Scholar
Palui, G., Aldeek, F., Wang, W. T. and Mattoussi, H., Chem. Soc. Rev. 44, 193227 (2015).Google Scholar
Wang, W., Ji, X., Na, H. B., Safi, M., Smith, A., Palui, G., Perez, J. M. and Mattoussi, H., Langmuir 30, 61976208 (2014).Google Scholar
Wang, W., Kapur, A., Ji, X., Safi, M., Palui, G., Palomo, V., Dawson, P. E. and Mattoussi, H., J. Am. Chem. Soc. 137, 54385451 (2015).Google Scholar
Wang, W., Ji, X., Kapur, A., Zhang, C. and Mattoussi, H., J. Am. Chem. Soc. 137, 1415814172 (2015).Google Scholar
Wang, W., Aldeek, F., Ji, X., Zeng, B. and Mattoussi, H., Faraday Discuss. 175, 137151 (2014).Google Scholar
Ji, X., Palui, G., Avellini, T., Na, H. B., Yi, C. Y., Knappenberger, K. L. and Mattoussi, H., J. Am. Chem. Soc. 134, 60066017 (2012).Google Scholar
Ji, X., Makarov, N. S., Wang, W. T., Palui, G., Robel, I. and Mattoussi, H., J. Phys. Chem. C. 119, 33883399 (2015).CrossRefGoogle Scholar
Ji, X., Wang, W. and Mattoussi, H., Phys. Chem. Chem. Phys. 17, 1010810117 (2015).Google Scholar