Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T12:35:16.189Z Has data issue: false hasContentIssue false

Supercurrent in Graphene Josephson Junctions with Narrow Trenches in the Quantum Hall Regime

Published online by Cambridge University Press:  28 May 2018

Andrew Seredinski*
Affiliation:
Department of Physics, Duke University, Durham, NC 27708, U.S.A.
Anne Draelos
Affiliation:
Department of Physics, Duke University, Durham, NC 27708, U.S.A.
Ming-Tso Wei
Affiliation:
Department of Physics, Duke University, Durham, NC 27708, U.S.A.
Chung-Ting Ke
Affiliation:
Department of Physics, Duke University, Durham, NC 27708, U.S.A.
Tate Fleming
Affiliation:
Department of Physics and Astronomy, Appalachian State University, Boone, NC 28607, U.S.A.
Yash Mehta
Affiliation:
Department of Physics and Astronomy, Appalachian State University, Boone, NC 28607, U.S.A.
Ethan Mancil
Affiliation:
Department of Physics and Astronomy, Appalachian State University, Boone, NC 28607, U.S.A.
Hengming Li
Affiliation:
Department of Physics and Astronomy, Appalachian State University, Boone, NC 28607, U.S.A.
Takashi Taniguchi
Affiliation:
Advanced Materials Laboratory, NIMS, Tsukuba 305-0044, Japan
Kenji Watanabe
Affiliation:
Advanced Materials Laboratory, NIMS, Tsukuba 305-0044, Japan
Seigo Tarucha
Affiliation:
Department of Applied Physics, University of Tokyo, Bunkyo-ku, Tokyo 1-8656, Japan Center for Emergent Matter Science (CEMS), RIKEN, Wako-shi, Saitama 351-0198, Japan
Michihisa Yamamoto
Affiliation:
Department of Applied Physics, University of Tokyo, Bunkyo-ku, Tokyo 1-8656, Japan Center for Emergent Matter Science (CEMS), RIKEN, Wako-shi, Saitama 351-0198, Japan
Ivan V. Borzenets
Affiliation:
Department of Physics, City University of Hong Kong, Kowloon, Hong Kong SAR
François Amet
Affiliation:
Department of Physics and Astronomy, Appalachian State University, Boone, NC 28607, U.S.A.
Gleb Finkelstein
Affiliation:
Department of Physics, Duke University, Durham, NC 27708, U.S.A.
*
*Corresponding author: Andrew Seredinski ([email protected])
Get access

Abstract

Coupling superconductors to quantum Hall edge states is the subject of intense investigation as part of the ongoing search for non-abelian excitations. Our group has previously observed supercurrents of hundreds of picoamperes in graphene Josephson junctions in the quantum Hall regime. One of the explanations of this phenomenon involves the coupling of an electron edge state on one side of the junction to a hole edge state on the opposite side. In our previous samples, these states are separated by several microns. Here, a narrow trench perpendicular to the contacts creates counterpropagating quantum Hall edge channels tens of nanometres from each other. Transport measurements demonstrate a change in the low-field Fraunhofer interference pattern for trench devices and show a supercurrent in both trench and reference junctions in the quantum Hall regime. The trench junctions show no enhancement of quantum Hall supercurrent and an unexpected supercurrent periodicity with applied field, suggesting the need for further optimization of device parameters.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alicea, J., Rep. Prog. Phys. 75 7 (2012).CrossRefGoogle Scholar
Mong, R.S.K., Clarke, D.J., Alicea, J., Lindner, N.H., Fendley, P., Nayak, C., Oreg, Y., Stern, A., Berg, E., Shtengel, K., and Fisher, M.P.A., Phys. Rev. X 4 011036 (2014).Google Scholar
San-Jose, P., Lado, J.L., Aguado, R., Guinea, F., and Fernández-Rossier, J., Phys. Rev. X 5 041041 (2015).Google Scholar
Calado, V.E., Goswami, S., Nanda, G., Diez, M., Akhmerov, A.R., Watanabe, K., Taniguchi, T., Klapwijk, T.M., and Vandersypen, L.M.K., Nat. Nanotechnol. 10 761764 (2015).CrossRefGoogle Scholar
Shalom, M.B., Zhu, M. J., Fal’ko, V. I., Mishchenko, A., Kretinin, A. V., Novoselov, K. S., Woods, C. R., Watanabe, K., Taniguchi, T., Geim, A. K., and Prance, J. R., Nat. Phys. 12, 318322 (2015).CrossRefGoogle Scholar
Wan, Z., Kazakov, A., Manfra, M.J., Pfeiffer, L.N., West, K.W., and Rokhinson, L.P., Nat. Comm. 6 (2015).Google Scholar
Lee, G.H., Huang, K.F., Efetov, D.K., Wei, D.S., Hart, S., Taniguchi, T., Watanabe, K., Yacoby, A., and Kim, P., Nature Physics 13 693698 (2017).CrossRefGoogle Scholar
Park, G.H., Kim, M., Watanabe, K., Taniguchi, T., and Lee, H.J., Sci. Rep. 7 (2017).Google Scholar
Amet, F., Ke, C.T., Borzenets, I.V., Wang, J., Watanabe, K., Taniguchi, T., Deacon, R.S., Yamamoto, M, Bomze, Y., Tarucha, S., and Finkelstein, G., Science 352, 966969 (2016).CrossRefGoogle Scholar
Draelos, A.W., Wei, M.T., Seredinski, A., Ke, C.T., Mehta, Y., Chamberlain, R., Watanabe, K., Tarucha, S., Borzenets, I.V., Amet, F., and Finkelstein, G., J. Low Temp. Phys. (2018).Google Scholar
Ma, A., and Zyuzin, A.Y., Europhys. Lett. 21 (1993).CrossRefGoogle Scholar
van Ostaay, J.A.M., Akhmerov, A.R., and Beenakker, C.W.J, Phys. Rev. B 83, 195441 (2011).CrossRefGoogle Scholar
Lindner, N.H., Berg, E., Rafael, G., and Stern, A., Phys. Rev. X 2 041002 (2012).Google Scholar
Clarke, D.J., Alicea, J., and Shtengel, K., Nat. Commun. 4 1348 (2013).CrossRefGoogle Scholar
Huang, X.L., and Nazarov, Y.V., Phys. Rev. Lett. 118 177001 (2017).CrossRefGoogle Scholar
Nazarov, Y.V. and Blanter, Y.M.. Quantum Transport: Introduction to Nanoscience (Cambridge University Press, UK 2009) pp. 103105.CrossRefGoogle Scholar
Borzenets, I.V., Amet, F., Ke, C.T., Draelos, A.W., Wei, M.T., Seredinski, A., Watanabe, K., Taniguchi, T., Bomze, Y., Yamamoto, M., Tarucha, S., and Finkelstein, G., Phys. Rev. Lett. 117, 237002 (2016).CrossRefGoogle Scholar
Wang, L., Meric, I., Huang, P.Y., Gao, Q., Gao, Y., Tran, H., Taniguchi, T., Watanabe, K., Campos, L.M., Muller, D.A., Guo, J., Kim, P., Hone, J., Shepard, K.L., and Dean, C.R., Science 342 6158 (2013).Google Scholar
Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K.S., Roth, S., and Geim, A.K., Phys. Rev. Lett. 97 187401 (2006).CrossRefGoogle Scholar
Grenadier, S., Li, J., Lin, J., and Jiang, H., J. Vac. Sci. Technol. 31 061517 (2013).CrossRefGoogle Scholar
Lemme, M.C., Bell, D.C., Williams, J.R., Stern, L.A., Baugher, B.W.H., Jarillo-Herrero, P., and Marcus, C.M., ACS Nano 3 (9) (2009).CrossRefGoogle Scholar
Nanda, G., Hlawacek, G., Srijit, G., Watanabe, K., Taniguchi, T., and Alkemade, P.F.A., Carbon 119 (2017).CrossRefGoogle Scholar
Ke, C.T., Borzenets, I.V., Draelos, A.W., Amet, F., Bomze, Y., Jones, G., Craciun, M., Russo, S., Yamamoto, M., Tarucha, S., and Finkelstein, G., Nano Lett. 16 4788–91 (2016).CrossRefGoogle Scholar
Miao, F., Wijeratne, S., Zhang, Y., Coskun, U.C., Bao, W., and Lau, C.N., Science 317, 1530 (2007).CrossRefGoogle Scholar
Young, A.F. and Kim, P., Nat. Phys. 5, 222226 (2009).CrossRefGoogle Scholar
Tinkham, M. Introduction to Superconductivity Second Edition (Dover, 2004) pp. 215218.Google Scholar
Blonder, G.E., Tinkham, M., and Klapwijk, T.M., Phys. Rev. B 25 (1982).CrossRefGoogle Scholar
Williams, J.R., Abanin, D.A., DiCarlo, L., Levitov, L.S., and Marcus, C.M., Phys. Rev. B 80 045408 (2009).CrossRefGoogle Scholar