Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T02:54:12.622Z Has data issue: false hasContentIssue false

Study of MnO2-Graphene Oxide nanocomposites for supercapacitor applications

Published online by Cambridge University Press:  01 February 2019

Rahul Singhal*
Affiliation:
Central Connecticut State University, New Britain, CT 06050, USA
Justin Fagnoni
Affiliation:
Central Connecticut State University, New Britain, CT 06050, USA
David Thorne
Affiliation:
Central Connecticut State University, New Britain, CT 06050, USA
Peter K. LeMaire
Affiliation:
Central Connecticut State University, New Britain, CT 06050, USA
Xavier Martinez
Affiliation:
Department of Chemistry, Pittsburg State University, Pittsburg, KS 66762, USA
Chen Zhao
Affiliation:
Department of Chemistry, Pittsburg State University, Pittsburg, KS 66762, USA
Ram K. Gupta
Affiliation:
Department of Chemistry, Pittsburg State University, Pittsburg, KS 66762, USA
David Uhl
Affiliation:
Connecticut State Colleges and Universities (CSCU) Center for Nanotechnology, Southern Connecticut State University, New Haven, CT 06515, USA
Ellen Scanley
Affiliation:
Connecticut State Colleges and Universities (CSCU) Center for Nanotechnology, Southern Connecticut State University, New Haven, CT 06515, USA
Christine C. Broadbridge
Affiliation:
Connecticut State Colleges and Universities (CSCU) Center for Nanotechnology, Southern Connecticut State University, New Haven, CT 06515, USA
Mani Manivannan
Affiliation:
Global Pragmatic Materials, Morgantown, WV 26508, USA
Rishikesh Pandey
Affiliation:
Connecticut Children’s Innovation Center, University of Connecticut School of Medicine, Farmington, CT 06030, USA
*
*Corresponding author: [email protected]; Ph. +1-860-832-2347
Get access

Abstract

Graphene oxide (GO)/MnO2 nanocomposites were synthesized by adding KMnO4 in a solution of water and ethanol (3:1), containing 10 mg of GO. Brown precipitates were obtained after a continuous stirring for 1 hr. The precipitates were then washed with deionized water (DI) water and dried to obtain the MnO2-GO nanocomposites. Pure MnO2 was also synthesized using the same method without GO for the comparison. X-ray diffraction pattern confirm δ-MnO2 type of MnO2 with birnessite type MnO2 structure. The TEM images show the average diameter of MnO2 nanorods as 15 nm. Electrochemical characterizations were carried out in an aqueous solution of 3M KOH. Charge-discharge studies were carried out between 1A/g to 20 A/g current range. The MnO2-GO nanocomposites showed improved electrochemical performances. The capacitance of MnO2 and MnO2-GO electrodes was found to be as 300 F/g, and 350 F/g, respectively at a current of 0.5 A/g.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Xia, Q.X., Shinde, N.M., Yun, J.M., Zhang, T., Mane, R.S., Mathur, S., and Kim, K.H., Electrochim. Acta 271, 351 (2018).CrossRefGoogle Scholar
Zhao, P., Yao, M., Ren, H., Wang, N., and Komarneni, S., Appl. Surf. Sci. 463, 931 (2019).CrossRefGoogle Scholar
Bello, A., Fashedemi, O.O., Lekitima, J.N., Fabiane, M., Arhin, D.D., Ozoemena, K.I., Gogotsi, Y., Johnson, A.T.C., and Manyala, N., AIP Adv. 3, 082118 (2013).CrossRefGoogle Scholar
Veneria, O., Capassoa, C., and Patalano, S., Appl. Energ. 227, 312 (2018).CrossRefGoogle Scholar
Bosca, A.G. and Belanger, D., J. Power Sources 326, 595 (2016).CrossRefGoogle Scholar
Bahloul, A., Nessark, B., Briot, E., Groult, H., Mauger, A., Zaghib, K., and Julien, C.M., J. Power Sources 240, 267 (2013).CrossRefGoogle Scholar
Haldorai, Y., Giribabu, K., Hwang, S.K., Kwak, C.H., Huh, Y.S., and Han, Y.K., Electrochim. Acta 222, 717 (2016).CrossRefGoogle Scholar
Su, X., Yu, L., Cheng, G., Zhang, H., Sun, M., Zhang, L., and Zhang, J., Appl. Energ. 134, 439 (2014).CrossRefGoogle Scholar
Le, Q. J., Wang, T., Tran, D.N.H., Dong, F., Zhang, Y.X. and Losic, D., J. Mater Chem A 5, 10856 (2017).CrossRefGoogle Scholar
Wang, T., Le, Q., Zhang, J., Zhang, Y., Li, W., Electrochim. Acta 253, 311 (2017).CrossRefGoogle Scholar
Pandey, R., Zhou, R., Bordett, R., Hunter, C., Glunde, K., Barman, I., Valdez, T., Finck, C., J. Biophotonics. 2018;e201800291. https://doi.org/10.1002/jbio.201800291Google Scholar
Wojydr, M., J. Appl. Crystallogr. 43, 1126 (2010).CrossRefGoogle Scholar
Chen, Z., Li, J., Chen, Y., Zhang, Y., Xu, G., Yang, J., and Feng, Y., Particuology 15, 27 (2014).Google Scholar
Su, X., Yu, L., Cheng, G., Zhang, H., Sun, M., Zhang, L., Zhang, J., Appl. Energ. 134, 439 (2014).CrossRefGoogle Scholar
Zhao, S., Liu, T., Javed, M.S., Zeng, W., Hussain, S., Zhang, Y., and Peng, X., Electrochim. Acta 191, 716 (2016).CrossRefGoogle Scholar
Ezeigwe, E.R., Tan, M.T.T., Khiew, P.S., and Siong, C.W., Ceram. Int. 41, 11418 (2015).CrossRefGoogle Scholar
Wen, Z.Q., Li, M., Li, F., Zhu, S.J., Liu, X.Y., Zhang, Y.X., Kumeria, T., Losic, D., Gao, Y., Zhange, W. and Hee, S.X., Dalton T, 45, 936 (2016).CrossRefGoogle Scholar
Li, F., Zhang, Y.X., Huang, M., Xing, Y., Zhang, L.L.., Electrochim. Acta 154, 329 (2015).CrossRefGoogle Scholar