Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T08:44:16.477Z Has data issue: false hasContentIssue false

Strain-controlled Graphene-Polymer Angular Actuator

Published online by Cambridge University Press:  19 June 2019

S. Matt Gilbert
Affiliation:
Department of Physics, University of California, Berkeley, CA, 94720 Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720 Kavli Energy Nanosciences Institute, Berkeley, CA, 94720
Adam Molnar
Affiliation:
Department of Physics, University of California, Berkeley, CA, 94720 Kavli Energy Nanosciences Institute, Berkeley, CA, 94720
Donez Horton-Bailey
Affiliation:
Department of Physics, University of California, Berkeley, CA, 94720 Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720 Kavli Energy Nanosciences Institute, Berkeley, CA, 94720
Helen Y. Yao
Affiliation:
Department of Physics, University of California, Berkeley, CA, 94720 Kavli Energy Nanosciences Institute, Berkeley, CA, 94720
Alex Zettl*
Affiliation:
Department of Physics, University of California, Berkeley, CA, 94720 Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720 Kavli Energy Nanosciences Institute, Berkeley, CA, 94720
*
Get access

Abstract

We demonstrate a suspended graphene-(poly(methyl methacrylate) (PMMA) polymer angular displacement actuator enabled by variable elastic modulus of the perforated stacked structure. Azimuthal flexures support a central disc-shaped membrane, and compression of the membrane can be used to control the rotation of the entire structure. Irradiating the PMMA on graphene stack with 5 kV electrons in a convention scanning electron microscope reduces the elastic modulus of the PMMA and allows graphene’s built in strain to dominate and compress the flexures, thus rotating the actuator.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Miller, D. and Alemán, B., “Shape tailoring to enhance and tune the properties of graphene nanomechanical resonators,” 2D Mater., vol. 4, no. 2, p. 25101, May 2017.CrossRefGoogle Scholar
Blees, Melina K., Barnard, Arthur W., Rose, Peter A., Roberts, Samantha P., McGill, Kathryn L., Huang, Pinshane Y., Ruyack, Alexander R., Kevek, Joshua W., Kobrin, Bryce, Muller, David A. & McEuen, Paul L., “Graphene kirigami,” Nature, vol. 524, no. 7564, pp. 204207, Aug. 2015.CrossRefGoogle ScholarPubMed
Miskin, Marc Z., Dorsey, Kyle J., Bircan, Baris, Han, Yimo, Muller, David A., McEuen, Paul L., and Cohen, Itai, “Graphene-based bimorphs for micron-sized, autonomous origami machines.,” Proc. Natl. Acad. Sci. U. S. A., vol. 115, no. 3, pp. 466470, Jan. 2018.CrossRefGoogle ScholarPubMed
Matt Gilbert, S., Dunn, Gabriel, Azizi, Amin, Pham, Thang, Shevitski, Brian, Dimitrov, Edgar, Liu, Stanley, Aloni, Shaul and Zettl, Alex, “Fabrication of Subnanometer-Precision Nanopores in Hexagonal Boron Nitride,” Sci. Rep., vol. 7, no. 1, p. 15096, Dec. 2017.CrossRefGoogle Scholar
Gilbert, S. M., Liu, S., Schumm, G., and Zettl, A., “Nanopatterning Hexagonal Boron Nitride with Helium Ion Milling: Towards Atomically-Thin, Nanostructured Insulators,” in MRS Advances, vol. 3, no. 6-7, pp. 327-331 2018.CrossRefGoogle Scholar
Cho, S. O. and Jun, H. Y., “Surface hardening of poly(methyl methacrylate) by electron irradiation,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol. 237, no. 3–4, pp. 525532, Aug. 2005.CrossRefGoogle Scholar
Papanu, J. S., Hess, D. W., Soane (Soong), D. S., and Bell, A. T., “Swelling of poly(methyl methacrylate) thin films in low molecular weight alcohols,” J. Appl. Polym. Sci., vol. 39, no. 4, pp. 803823, Feb. 1990.CrossRefGoogle Scholar
Jin, Y., Harrington, D., Rachford, A. A., and Rack, J. J., “Stimulating changes in the elastic modulus of polymer materials by molecular photochromism,” RSC Adv., vol. 4, no. 108, pp. 6292062925, Nov. 2014.CrossRefGoogle Scholar
Abdel-Wahab, A. A., Ataya, S., and Silberschmidt, V. V., “Temperature-dependent mechanical behaviour of PMMA: Experimental analysis and modelling,” Polym. Test., vol. 58, pp. 8695, Apr. 2017.CrossRefGoogle Scholar
Gannett, W., Regan, W., Watanabe, K., Taniguchi, T., Crommie, M. F., and Zettl, A., “Boron nitride substrates for high mobility chemical vapor deposited graphene,” Appl. Phys. Lett., vol. 98, no. 24, p. 242105, Jun. 2011.CrossRefGoogle Scholar
Li, Xuesong, Cai, Weiwei, An, Jinho, Kim, Seyoung, Nah, Junghyo, Yang, Dongxing, Piner, Richard, Velamakanni, Aruna, Jung, Inhwa, Tutuc, Emanuel, Banerjee, Sanjay K., Columbo, Luigi, Ruoff, Rodney S., “Large-area synthesis of high-quality and uniform graphene films on copper foils.,” Science, vol. 324, no. 5932, pp. 1312–4, Jun. 2009.CrossRefGoogle ScholarPubMed
Chen, Changyao and Hone, J., “Graphene nanoelectromechanical systems,” Proc. IEEE, vol. 101, no. 7, pp. 17661779, Jul. 2013.CrossRefGoogle Scholar
Chen, C. et al., “Performance of monolayer graphene nanomechanical resonators with electrical readout,” Nat. Nanotechnol., vol. 4, no. 12, pp. 861867, Dec. 2009.CrossRefGoogle ScholarPubMed
Alemán, Benjamin, Rousseas, Michael, Yang, Yisheng, Regan, Will, Crommie, Michael, Wang, Feng, Alex Zettl, “Polymer-free, low tension graphene mechanical resonators,” Phys. status solidi - Rapid Res. Lett., vol. 7, no. 12, pp. 10641066, Dec. 2013.CrossRefGoogle Scholar
Rasool, H. I., Ophus, C., Klug, W. S., Zettl, A., and Gimzewski, J. K., “Measurement of the intrinsic strength of crystalline and polycrystalline graphene,” Nat. Commun., vol. 4, no. 1, p. 2811, Dec. 2013.CrossRefGoogle Scholar
Zhang, K. and Arroyo, M., “Understanding and strain-engineering wrinkle networks in supported graphene through simulations,” J. Mech. Phys. Solids, vol. 72, pp. 6174, Dec. 2014.CrossRefGoogle Scholar
Zhu, S.-E., Krishna Ghatkesar, M., Zhang, C., and Janssen, G. C. A. M., “Graphene based piezoresistive pressure sensor,” Appl. Phys. Lett., vol. 102, no. 16, p. 161904, Apr. 2013.CrossRefGoogle Scholar
Smith, A. D., Niklaus, F., Paussa, A., Vaziri, S., Fischer, A.C., Sterner, M., Forsberg, F., Delin, A., Esseni, D., Palestri, P., Ostling, M., and Lemme, M.C., “Electromechanical Piezoresistive Sensing in Suspended Graphene Membranes,” Nano Lett., vol. 13, no. 7, pp. 32373242, Jul. 2013.CrossRefGoogle ScholarPubMed
Kumar, M. and Bhaskaran, H., “Ultrasensitive Room-Temperature Piezoresistive Transduction in Graphene-Based Nanoelectromechanical Systems,” Nano Lett., vol. 15, no. 4, pp. 25622567, Apr. 2015.CrossRefGoogle ScholarPubMed
Teshima, Tetsuhiko F., Henderson, Calum S., Takamura, Makoto, Ogawa, Yui, Wang, Shengnan, Kashimura, Yoshiaki, Sasaki, Satoshi, Goto, Toichiro, Nakashima, Hiroshi, and Ueno, Yuko, “Self-Folded Three-Dimensional Graphene with a Tunable Shape and Conductivity,” Nano Lett., vol. 19, no. 1, pp. 461470, Jan. 2019.CrossRefGoogle ScholarPubMed