Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-23T13:55:37.288Z Has data issue: false hasContentIssue false

Some Considerations on Confined Water: The Thermal Behavior of Transport Properties in Water-Glycerol and Water-Methanol Mixtures

Published online by Cambridge University Press:  26 January 2016

Francesco Mallamace*
Affiliation:
Dipartimento MIFT, Sezione di Fisica,Università di Messina I-98166, Messina, Italy Consiglio Nazionale delle Ricerche-IPCF Messina, I-98166, Messina, Italy Center for Polymer Studies and Department of Physics, Boston University Boston, MA 02215USA.
Carmelo Corsaro
Affiliation:
Dipartimento MIFT, Sezione di Fisica,Università di Messina I-98166, Messina, Italy Consiglio Nazionale delle Ricerche-IPCF Messina, I-98166, Messina, Italy
Domenico Mallamace
Affiliation:
Dipartimento SASTAS, Università di Messina Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
Cirino Vasi
Affiliation:
Consiglio Nazionale delle Ricerche-IPCF Messina, I-98166, Messina, Italy
Sebastiano Vasi
Affiliation:
Dipartimento MIFT, Sezione di Fisica,Università di Messina I-98166, Messina, Italy
H. Eugene Stanley
Affiliation:
Center for Polymer Studies and Department of Physics, Boston University Boston, MA 02215USA.
*
Get access

Abstract

We discuss recent literature data on the relaxation times (the primary tα), viscosity, and self-diffusion in water-glycerol and water-methanol mixtures across a wide temperature range from the stable water phase to the deep supercooled regime (373–147K). In particular, to clarify the role of hydrophilicity interactions (the hydrogen bonds) and hydrophobic interactions we study the mixture in terms of the water molar fraction (XW) with fixed temperatures at 5K steps across the entire composition range, and we find a marked deviation from the ideal thermodynamic behavior of the transport functions. This deviation is strongly T and XW dependent and spans values that range from two orders of magnitude at the highest temperature to more than five in the deeply supercooled regime (more precisely, at ≃200K). We analyze these deviations in terms of how the measured values differ from ideal values and find that the hydrogen-bonding water network dominates system properties up to XW = 0.3. We also examine an Arrhenius plot of the maximum excess value (Δtα(T) vs. 1/T) and find two significant changes due to water: one at the dynamical crossover temperature (TL ≃ 225K, i.e., the locus of the Widom line), and one at T ≃ 315K (the water isothermal compressibility χT minimum).

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ball, P., Nature 452, 291 (2008).Google Scholar
Hilser, V. J., Nature 469, 166 (2011).CrossRefGoogle Scholar
Advances in Chemical Physics, Water Polymorphism, edited by Stanley, H. E., series editor Rice, S.A. (Wiley, New York, 2013).Google Scholar
Frank, H. S. and Evans, M. W., J. Chem. Phys. 13, 507 (1945).Google Scholar
Mikhail, S. Z. and Kimel, W. R., J. Chem. Eng. Data 6, 533 (1961).Google Scholar
Popov, I., Greenbaum, A., Sokolov, A. P. and Feldman, Y., Phys. Chem. Chem. Phys. 17, 18063 (2015).Google Scholar
Micali, N., Trusso, S., Vasi, C., Blaudez, D. and Mallamace, F., Phys. Rev. E 54, 1720 (1996).Google Scholar
Derlacki, Z. J., Easteal, A., Edge, A. V. J., Woolf, L. A. and Roksandic, Z., J. Phys. Chem. 89, 5318 (1985).CrossRefGoogle Scholar
Corsaro, C. et al. ., J. Phys. Chem. B 112, 10449 (2008).Google Scholar
Soper, A. K., Dougan, L., Crain, J. L. and Finney, J., J. Phys. Chem. B 110, 3472 (2006).Google Scholar
Dougan, L. et al. ., J. Chem. Phys. 121, 6456 (2004); J. Chem. Phys. 122, 174514 (2005).Google Scholar
Nagasaka, M., Mochizuki, K., Leloup, V. and Kosugi, N., J. Phys. Chem. B 118, 4388 (2014).Google Scholar
Lin, K., Hu, N., Zhou, X., Liu, S. and Luo, Y., J. Raman Spectrosc. 43, 8288 (2012).Google Scholar
Nedić, M., Wassermann, T. N., Larsen, R. W. and Suhm, M. A., Phys. Chem. Chem. Phys. 13, 14050 (2011).Google Scholar
Rezus, Y. L. and Bakker, H. J., Phys. Rev. Lett. 99, 148301 (2007).CrossRefGoogle Scholar
Li, R., D’Agostino, C., McGregor, J., Mantle, M.D., Zeitler, J. A. and Gladden, L. F., J. Phys. Chem. B 118, 10156 (2014).CrossRefGoogle Scholar
Sato, T., Chiba, A. and Nozaki, R., J. Chem. Phys. 110, 2508 (1999).Google Scholar
Denney, D. J. and Cole, R.H., J. Chem. Phys, 25, 1767 (1955).Google Scholar
Mandal, H., Frood, D. G., Saleh, M. A., Morgan, Bi. K. and Walker, S., Chem. Phys. 134, 441 (1989).Google Scholar
Jordan, B. P., Sheppardt, R. J. and Szwarnowski, S, J. Phys. D: Appl. Phys. 11, 695 (1978).Google Scholar
Bertolini, D., Cassettari, M., and Salvetti, G., J. Chem. Phys. 78, 365 (1983).Google Scholar
Noyel, G. A., Jorat, L. J., Derriche, O. and Huck, J. R., IEEE Trans. on Elect. Ins. 27, 1136 (1992).Google Scholar
Sun, M., Wang, L-M., Tian, Y., Liu, R., Ngai, K. L., and Tan, C., J. Phys. Chem. B 15, 8242 (2011).Google Scholar
Mejía, S. M., Flórez, E. and Mondragón, F., J. Chem. Phys. 136, 144306 (2012).Google Scholar
Sciortino, F., Geiger, A. and Stanley, H.E., Nature 354, 218 (1991).CrossRefGoogle Scholar
Allison, S. K., P Fox, J., Hargreaves, R. and Bates, S.P., Phys. Rev. B 71, 024201 (2005).Google Scholar
Ferrario, M., Haughney, M., McDonald, I.R, Klein, M.L., J. Chem. Phys, 93, 5156 (1990).Google Scholar
da Silva, A.J.B., Moreira, F.G.B., dos Santos, V.M.L., Longo, R.L., Phys. Chem. Chem. Phys. 13, 593 (2011).CrossRefGoogle Scholar
Towey, J., Dougan, J., J. Phys. Chem. B, 116, 1633 (2012) J. Phys. Chem. B, 115, 7799 (2011).Google Scholar
Mallamace, F., Corsaro, C. and Stanley, H. E., Sci. Rep., 2, 993 (2012).Google Scholar
Mishima, O., Calvert, L.D., and Whalley, E., Nature, 314, 76 (1984).Google Scholar
Mallamace, F., Proc. Natl. Acad. Sci. USA 106, 15097 (2009).Google Scholar
Mallamace, F., Broccio, M., Corsaro, C., Faraone, A., Majolino, D., Venuti, V., Liu, L., Mou, C.-Y., and Chen, S.-H, Proc. Natl. Acad. Sci. USA 104, 424 (2007).Google Scholar
Mallamace, F., Branca, C., Broccio, M., Corsaro, C., and Chen, S.-H., Proc. Natl. Acad. Sci. USA 104, 18387 (2007).Google Scholar
Xu, L., Mallamace, F., Yan, Z., Starr, F. W., Buldyrev, S. V., and Stanley, H. E., Nat. Phys. 5, 565 (2009).Google Scholar
Poole, P.H., Sciortino, F., Essmann U, U., Stanley, H.E., Nature 360, 324 (1992).Google Scholar
Mallamace, F. et al. . Transport and dynamics in supercooled confined water, in Liquid Polymorphism, Ed. by: Stanley, H.E., HE Book Series: Advances in Chemical Physics 152 203262 (2013).Google Scholar
Mallamace, F., Corsaro, C., Stanley, H.E., Proc. Natl. Acad. Sci. USA 110, 4899 (2013).CrossRefGoogle Scholar
Liu, L., Chen, S.-H., Faraone, A., Yen, C.W., Mou, C. Y., Phys. Rev. Lett. 95, 117802 (2005).Google Scholar
Mallamace, F., Broccio, M., Corsaro, C., Faraone, A., Wanderlingh, U. Liu, L., Mou, C.Y., Chen, S.H., J. Chem. Phys., 124, 161102 (2006).Google Scholar
Xu, L., Kumar, P., Buldirev, S.V., Chen, S.-H., Poole, P.H., Sciortino, F., Stanley, H.E., Proc. Natl. Acad. Sci. (USA), 102, 16558 (2005).Google Scholar
Chen, S.H., Mallamace, F., Mou, C.Y., Broccio, M., Corsaro, C., Faraone, A., Liu, L., Proc. Natl. Acad. Sci. (USA), 103, 12974 (2006).Google Scholar
Narten, A.H., Habenschuss, A, J. Chem. Phys., 80, 3387 (1984).CrossRefGoogle Scholar
Sarkar, S., Joarder, R.N., J. Chem. Phys., 99, 2032 (1993).Google Scholar
Dashnau, J.L., Nucci, N V., Sharp, K.A., and Vanderkooi, J.M., J. Phys. Chem. B, 110, 13670 (2006).Google Scholar
Corsaro, C., Maisano, R., Mallamace, D. and Dugo, G., Physica A, 392, 596 (2013).Google Scholar
Price, W. S., Hiroyudi, I., and Arata, Y., J. Phys. Chem. A 103, 448 (1999).Google Scholar
Cho, C. H., Urquidi, J., Singh, S., and Wilse Robinson, G., J. Phys. Chem. B , 103, 1991 (1999).Google Scholar
Bertolini, D., Cassettari, M., and Salvetti, G., J. Chem. Phys 76, 3285 (1982).Google Scholar
Ronne, C., °Aatyarnd, P.O. and Keiding, S.R., Phys. Rev. Lett. 82, 2888 (1999).Google Scholar
Sattig, M. and Vogel, M., J. Phys. Chem. Lett. 5, 174 (2014).Google Scholar
Mallamace, F., Branca, C., Corsaro, C., Leone, N., Spooren, J., Stanley, H.E. and Chen, S.-H., J. Phys. Chem. B 114, 1870 (2010).Google Scholar
Karger, N., Vardag, T., and L¨udemann, H.-D. J. Chem. Phys. 93, 3437 (1990).15, 8242 (2011).Google Scholar
Chen, B., Sigmund, E. E., and Halperin, W. P., Phys. Rev. Lett. 96, 145502 (2006).Google Scholar
Mallamace, F., Corsaro, C., Mallamace, D., Vasi, C., Vasi, S., Stanley, H.E., submitted (2015).Google Scholar
Schröter, K.; Donth, E. J. Chem. Phys. 113, 9101 (2000).CrossRefGoogle Scholar
Trejo Gonzalez, J., Longinotti, M. P., and Corti, H. R., J. Chem. Eng. Data 56, 1397 (2011).Google Scholar
Holten, V. et al. ., J. Chem. Phys. 140, 104502 (2014).Google Scholar
Pettersson, L.G.M. and Nilsson, A., J. of Non-Cryst. Sol. 407 399417 (2015); J. Chem. Phys. 134, 214506 (2011)CrossRefGoogle Scholar
Wikfeldt, K. T., Nilsson, A. and Pettersson, L.G.M., Phys. Chem. Chem. Phys., 13, 19918 (2011).Google Scholar
Sellberg, J.A. et al. ., J. Chem. Phys. 142, 044505 (2015); Nature 510, 381 (2014).Google Scholar