Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-10T19:26:36.093Z Has data issue: false hasContentIssue false

Solution-Processed Cubic GaN for Potential Lighting Applications

Published online by Cambridge University Press:  15 February 2019

Aakash Kumar Jain
Affiliation:
Department of Electrical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
Sushma Yadav
Affiliation:
Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India. Institute of Physical Chemistry and Electrochemistry, Leibnitz University of Hannover, Germany
Meenal Mehra
Affiliation:
Department of Electrical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India Momentive Performance Materials India Pvt. Ltd., Bengaluru, India
Sameer Sapra
Affiliation:
Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India.
Madhusudan Singh*
Affiliation:
Department of Electrical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
*
Get access

Abstract:

Cubic gallium nitride (GaN) is a wide bandgap semiconductor that exhibits a high crystallographic symmetry resulting in a lower inbuilt polarization which is useful for more efficient phosphor-free green light-emitting diodes. It has been grown using molecular beam epitaxy (MBE) and metal-organic chemical vapor deposition (MOCVD), which produce highly ordered thin films on compatible substrates. In this work, we report the chemical synthesis of GaN using chemical metathesis reaction in diethyl ether with lithium nitride and anhydrous gallium chloride as precursors, inside a nitrogen glove box at the room temperature. The resulting product was subsequently washed to remove lithium chloride and dried before vacuum annealing in a furnace at 850°C. Powder X-ray diffraction (XRD) scans of the as-prepared and annealed product reveal a mixed phase of GaN along with Ga2O3. Energy dispersive X-ray spectroscopy (EDAX) measurements show a nitrogen-poor product, which correlates well with the nearly black color of the powder. Diffuse reflectance spectroscopy (DRS) measurements were carried out with the obtained product on a barium sulfate substrate in a Perkin-Elmer Lambda 1050-UV-Vis-NIR spectrophotometer showing a strong absorbance below 400 nm. The energy band gap is bounded by values extracted from the Tauc plot and DRS measurements in the range of 3.2-3.5 eV, which is in good agreement with the known excitonic bandgap of cubic GaN (∼ 3.3 eV). Initial photoluminescence (PL) measurements using a Perkin-Elmer LS-55 spectrophotometer with an excitation wavelength of 310 nm reveal a weak emission centered around 440 nm corresponding to the known defect centers (D0X) in GaN. Further development of this process to form inks is expected to provide an alternate pathway to producing flexible phosphor-free lighting devices.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Flack, T. J., Pushpakaran, B. N., and Bayne, S. B., Journal of Elec Materi 45, 2673 (2016).CrossRefGoogle Scholar
Li, G., Wang, W., Yang, W., Lin, Y., Wang, H., Lin, Z., and Zhou, S., Rep. Prog. Phys. 79, 056501 (2016).CrossRefGoogle Scholar
Ren, C. X., Materials Science and Technology 32, 418 (2016).Google Scholar
Bayram, C. and Liu, R., Proc SPIE Int Soc Opt Eng 10111, (2017).Google Scholar
Ambacher, O., Smart, J., Shealy, J. R., Weimann, N. G., Chu, K., Murphy, M., Schaff, W. J., Eastman, L. F., Dimitrov, R., Wittmer, L., Stutzmann, M., Rieger, W., and Hilsenbeck, J., Journal of Applied Physics 85, 3222 (1999).CrossRefGoogle Scholar
Singh, M., Singh, J., and Mishra, U. K., MRS Online Proceedings Library Archive 798, (2003).Google Scholar
Singh, M. and Singh, J., Journal of Applied Physics 94, 2498 (2003).CrossRefGoogle Scholar
Singh, M. and Singh, J., MRS Online Proceedings Library Archive 693, (2001).Google Scholar
Singh, M., Singh, J., and Mishra, U., in APS March Meeting (AIP Publishing, Indianapolis, IN, 2002), p. Q19.012.Google Scholar
Jeong, H., Jeong, H. J., Oh, H. M., Hong, C.-H., Suh, E.-K., Lerondel, G., and Jeong, M. S., Scientific Reports 5, 9373 (2015).CrossRefGoogle Scholar
Auf der Maur, M., Pecchia, A., Penazzi, G., Rodrigues, W., and Di Carlo, A., Phys. Rev. Lett. 116, 027401 (2016).CrossRefGoogle Scholar
Dua, N., Saha, S., Mehra, M., and Singh, M., in Nanophotonic Materials XV (International Society for Optics and Photonics, 2018), p. 1072003.Google Scholar
Cho, S. I., Chang, K., and Kwon, M. S., J Mater Sci 42, 3569 (2007).CrossRefGoogle Scholar
Dai, Y., Shao, Y., Wu, Y., Hao, X., Zhang, P., Cao, X., Zhang, L., Tian, Y., and Zhang, H., RSC Advances 4, 21504 (2014).CrossRefGoogle Scholar
Wang, W., Wang, H., Yang, W., Zhu, Y., and Li, G., Scientific Reports 6, 24448 (2016).CrossRefGoogle Scholar
Davis, R. F., Roskowski, A.M., Preble, E. A., Speck, J. S., Heying, B., Freitas, J. A., Glaser, E. R., and Carlos, W. E., Proceedings of the IEEE 90, 993 (2002).CrossRefGoogle Scholar
Oshima, Y., Eri, T., Shibata, M., Sunakawa, H., Kobayashi, K., Ichihashi, T., and Usui, A., Jpn. J. Appl. Phys. 42, L1 (2003).CrossRefGoogle Scholar
Rogers, J. A., Ferreira, P. M., and Saeidpourazar, R., US9555644B2 (31 January 2017).Google Scholar
Yoon, J., Lee, S.-M., Kang, D., Meitl, M. A., Bower, C. A., and Rogers, J. A., Advanced Optical Materials 3, 1313 (2015).CrossRefGoogle Scholar
Trindade, A. J., Guilhabert, B., Xie, E. Y., Ferreira, R., McKendry, J. J. D., Zhu, D., Laurand, N., Gu, E., Wallis, D. J., Watson, I. M., Humphreys, C. J., and Dawson, M. D., Opt. Express, OE 23, 9329 (2015).CrossRefGoogle Scholar
Lerner, R., Eisenbrandt, S., Fischer, F., Fecioru, A., Trindade, A.J., Bonafede, S., Bower, C., Waltereit, P., Reiner, R., and Czap, H., Physica Status Solidi (A) 215, 1700556 (2018).CrossRefGoogle Scholar
Waldrip, K. E., Tsao, J. Y., and Kerley, T. M., US7435297B1 (14 October2008).Google Scholar
Tian, Y., Shao, Y., Wu, Y., Hao, X., Zhang, L., Dai, Y., and Huo, Q., Sci Rep 5, (2015).Google Scholar
Seacrist, M., High Quality, Low Cost Bulk Gallium Nitride Substrates Grown by the Electrochemical Solution Growth Method (SunEdison Inc., St. Peters, MO, 2017).CrossRefGoogle Scholar
Novikov, S. V. and Foxon, C. T., Journal of Crystal Growth 354, 44 (2012).CrossRefGoogle Scholar
Parala, H., Devi, A., Wohlfart, A., Winter, M., and Fischer, R. A., Advanced Functional Materials 11, 224 (2001).3.0.CO;2-4>CrossRefGoogle Scholar
Puchinger, M., Wagner, T., Rodewald, D., Bill, J., Aldinger, F., and Lange, F. F., Journal of Crystal Growth 208, 153 (2000).CrossRefGoogle Scholar
Wallace, C. H., Kim, S.-H., Rose, G. A., Rao, L., Heath, J. R., Nicol, M., and Kaner, R. B., Appl. Phys. Lett. 72, 596 (1998).CrossRefGoogle Scholar
Pan, G., Kordesch, M. E., and Van Patten, P. G., Chem. Mater. 18, 5392 (2006).CrossRefGoogle Scholar
Patten, P. G. V. and Pan, G., US7641880B2 (5 January 2010).Google Scholar
Deol, R. S., Choi, H. W., Singh, M., and Jabbour, G. E., IEEE Sensors Journal 15, 3186 (2015).CrossRefGoogle Scholar
Choi, H. W., Zhou, T., Singh, M., and Jabbour, G. E., Nanoscale 7, 3338 (2015).CrossRefGoogle Scholar
Kubelka, P. and Munk, F., Zeitschrift Fur Technische Physik 12, 593 (1931).Google Scholar
Purdy, A. P., Chem. Mater. 11, 1648 (1999).CrossRefGoogle Scholar
Wood, B. J. and Strens, R. G. J., Mineralogical Magazine 43, 509 (1979).CrossRefGoogle Scholar
Feneberg, M., Röppischer, M., Cobet, C., Esser, N., Schörmann, J., Schupp, T., As, D. J., Hörich, F., Bläsing, J., Krost, A., and Goldhahn, R., Phys. Rev. B 85, 155207 (2012).CrossRefGoogle Scholar
Reshchikov, M. A. and Morkoç, H., Journal of Applied Physics 97, 061301 (2005).CrossRefGoogle Scholar
Segal, M., Mulder, C., Celebi, K., Singh, M., Rivoire, K., Difley, S., Van Voorhis, T., and Baldo, M. A., in Proc. SPIE (2008), pp. 699912-699912–17.Google Scholar
Singh, M., Chae, H. S., Froehlich, J. D., Kondou, T., Li, S., Mochizuki, A., and Jabbour, G., MRS Online Proceedings Library 1197, (2009).Google Scholar
Ganesh, V., Suresh, S., Balaji, M., and Baskar, K., Journal of Alloys and Compounds 498, 52 (2010).CrossRefGoogle Scholar