Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T12:29:20.959Z Has data issue: false hasContentIssue false

Self-stabilized fibronectin films at the air/water interface

Published online by Cambridge University Press:  04 November 2019

Thanga Bhuvanesh
Affiliation:
Institute of Biomaterial Research and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstrasse 55, 14513 Teltow, Germany Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany
Rainhard Machatschek
Affiliation:
Institute of Biomaterial Research and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstrasse 55, 14513 Teltow, Germany
Yue Liu
Affiliation:
Institute of Biomaterial Research and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstrasse 55, 14513 Teltow, Germany Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany
Nan Ma
Affiliation:
Institute of Biomaterial Research and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstrasse 55, 14513 Teltow, Germany Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
Andreas Lendlein*
Affiliation:
Institute of Biomaterial Research and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstrasse 55, 14513 Teltow, Germany Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
*
Get access

Abstract

Fibronectin (FN) is a mediator molecule, which can connect cell receptors to the extracellular matrix (ECM) in tissues. This function is highly desirable for biomaterial surfaces in order to support cell adhesion. Controlling the fibronectin adsorption profile on substrates is challenging because of possible conformational changes after deposition, or due to displacement by secondary proteins from the culture medium. Here, we aim to develop a method to realize self-stabilized ECM glycoprotein layers with preserved native secondary structure on substrates. Our concept is the assembly of FN layers at the air-water (A-W) interface by spreading FN solution as droplets on the interface and transfer of the layer by the Langmuir-Schäfer (LS) method onto a substrate. It is hypothesized that 2D confinement and high local concentration at A-W interface supports FN self-interlinking to form cohesive films. Rising surface pressure with time, plateauing at 10.5 mN·m-1 (after 10 hrs), indicated that FN was self-assembling at the A-W interface. In situ polarization-modulation infrared reflection absorption spectroscopy of the layer revealed that FN maintained its native anti-parallel β-sheet structure after adsorption at the A-W interface. FN self-interlinking and elasticity was shown by the increase in elastic modulus and loss modulus with time using interfacial rheology. A network-like structure of FN films formed at the A-W interface was confirmed by atomic force microscopy after LS transfer onto Si-wafer. FN films consisted of native, globular FN molecules self-stabilized by intermolecular interactions at the A-W interface. Therefore, the facile FN self-stabilized network-like films with native anti-parallel β-sheet structure produced here, could serve as stable ECM protein coatings to enhance cell attachment on in vitro cell culture substrates and planar implant materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES:

Scharnagl, N., Lee, S., Hiebl, B., Sisson, A. and Lendlein, A., Journal of Materials Chemistry 20 (40), 8789-8802 (2010).CrossRefGoogle Scholar
Yang, C., DelRio, F. W., Ma, H., Killaars, A. R., Basta, L. P., Kyburz, K. A. and Anseth, K. S., Proceedings of the National Academy of Sciences 113 (31), E4439-E4445 (2016).CrossRefGoogle Scholar
Krishna, O. D. and Kiick, K. L., Biopolymers 94 (1), 32-48 (2010).CrossRefGoogle Scholar
Renner, L., Pompe, T., Salchert, K. and Werner, C., Langmuir : the ACS journal of surfaces and colloids 21 (10), 4571-4577 (2005).CrossRefGoogle Scholar
Vogler, E. A., Biomaterials 33 (5), 1201-1237 (2012).CrossRefGoogle Scholar
Alberts, B., Johnson, Alexander, Lewis, Julian, Raff, Martin, Roberts, Keith, and Walter, Peter, Molecular biology of the cell ., 15th ed. (Garland Science, 2002).Google Scholar
Pauthe, E., Pelta, J., Patel, S., Lairez, D. and Goubard, F., Biochimica et biophysica acta 1597 (1), 12-21 (2002).CrossRefGoogle Scholar
Xu, J. and Mosher, D., in The Extracellular Matrix: an Overview, edited by Mecham, R. P. (Springer Berlin Heidelberg, Berlin, Heidelberg, 2011), pp. 41-75.CrossRefGoogle Scholar
Bierbaum, S. and Scharnweber, D., in Comprehensive Biomaterials, edited by Ducheyne, P. (Elsevier, Oxford, 2011), pp. 127-153.CrossRefGoogle Scholar
Feinberg, A. W. and Parker, K. K., Nano Letters 10 (6), 2184-2191 (2010).CrossRefGoogle Scholar
Ahn, S., Deravi, L. F., Park, S. J., Dabiri, B. E., Kim, J. S., Parker, K. K. and Shin, K., Advanced materials (Deerfield Beach, Fla.) 27 (18), 2838-2845 (2015).CrossRefGoogle Scholar
Vijaya Bhaskar, T., Saretia, S., Roch, T., Schöne, A.-C., Rottke, F., Kratz, K., Wang, W., Ma, N., Schulz, B. and Lendlein, A., Polymers for Advanced Technologies 28 (2016).Google Scholar
Bhuvanesh, T., Machatschek, R., Lysyakova, L., Kratz, K., Schulz, B., Ma, N. and Lendlein, A., Biomedical materials (Bristol, England) 14 (2), 024101 (2019).CrossRefGoogle Scholar
Brennan-Fournet, M. E., Huerta, M., Zhang, Y., Malliaras, G. and Owens, R. M., Journal of Materials Chemistry B 3 (47), 9140-9147 (2015).CrossRefGoogle Scholar
Barth, A. and Zscherp, C., Quarterly reviews of biophysics 35 (4), 369-430 (2002).CrossRefGoogle Scholar
Sjöberg, B., Eriksson, M., Österlund, E., Pap, S. and Österlund, K., European Biophysics Journal 17 (1), 5-11 (1989).CrossRefGoogle Scholar
Baujard-Lamotte, L., Noinville, S., Goubard, F., Marque, P. and Pauthe, E., Colloids and surfaces. B, Biointerfaces 63 (1), 129-137 (2008).CrossRefGoogle Scholar
Wittemann, A. and Ballauff, M., Physical Chemistry Chemical Physics 8 (45), 5269-5275 (2006).CrossRefGoogle Scholar
Klotzsch, E., Smith, M., Kubow, K., Muntwyler, S., Little, W., Beyeler, F., Gourdon, D., Nelson, B. and Vogel, V., Proceedings of the National Academy of Sciences of the United States of America 106, 18267-18272 (2009).CrossRefGoogle Scholar
Viji Babu, P. K., Rianna, C., Mirastschijski, U. and Radmacher, M., Scientific Reports 9 (1), 12317 (2019).CrossRefGoogle Scholar
Malcolm, A. S., Dexter, A. F. and Middelberg, A. P., Langmuir : the ACS journal of surfaces and colloids 22 (21), 8897-8905 (2006).CrossRefGoogle Scholar
Tooney, N. M., Mosesson, M. W., Amrani, D. L., Hainfeld, J. F. and Wall, J. S., The Journal of cell biology 97 (6), 1686-1692 (1983).CrossRefGoogle Scholar