Published online by Cambridge University Press: 20 March 2018
Highly detailed structural characterization is required to understand the discharge mechanism in order to effectively investigate α-MnO2 structured lithium battery cathode materials. This paper discusses recent findings which elucidate the lithiation mechanism of silver-hollandite, AgxMn8O16. For Ag1.2Mn8O16, the structure is not significantly perturbed during the first 2 equivalents of lithiation and the electrochemistry is highly reversible. Upon 4 equivalents of lithiation, the structure becomes highly distorted, in correlation with capacity fade observed over 40 cycles. Notably, regarding capacity fade, modifications to Ag/Mn ratio are less impactful than modifications to the α-MnO2 crystallite size. This is shown in comparisons of two materials with the same stoichiometry (Ag1.4Mn8O16) and differing crystallite size (10 and 15 nm).
Equivalent contributions.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.