Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T04:11:18.883Z Has data issue: false hasContentIssue false

Refractory-Metal Diffusion Inhibitors Slow Erosion of Catalytic Metal Particles in the growth of Carbon Nanotubes

Published online by Cambridge University Press:  03 January 2019

Michael J. Bronikowski*
Affiliation:
Department of Chemistry, Biochemistry and Physics; University of Tampa, 401 W. Kennedy Blvd., Tampa, FL 33606
Melissa King
Affiliation:
Department of Chemistry, Biochemistry and Physics; University of Tampa, 401 W. Kennedy Blvd., Tampa, FL 33606
*
Get access

Abstract

Catalytic growth of substantial amounts of Carbon Nanotubes (CNTs) to lengths greater than 1 – 2 cm is currently limited by several factors, including especially the deactivation of the catalyst particles due to erosion of catalyst atoms from the catalyst particles at elevated CNT growth temperatures. Inclusion of refractory metals in the CNT growth catalyst has recently been proposed as a method to prevent this catalytic particle erosion and deactivation, allowing the CNT to grow for greater times and reach substantially greater lengths. Here are presented results of recent investigations into this method. The system investigated employs Molybdenum as the erosion inhibitor and Iron as the CNT growth catalyst. Results show that inclusion of Mo leads to substantially longer catalyst particle lifetimes.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Yacobson, B. and Smalley, R.. American Scientist 85, 324 (1997).Google Scholar
Meo, M. and Rossi, M.. Composites Science and Technology 66, 1597 (2006).CrossRefGoogle Scholar
Peng, B., Locascio, M., Zapol, P., Li, S. Y., Mielke, S. L., Schatz, G. C., Espinosa, H. D.. Nature Nanotechnology 3, 626 (2008).CrossRefGoogle Scholar
Atkinson, K. R., Hawkins, S. C., Huynh, C., Skourtis, C., Dai, J., Zhang, M., Fang, S. L., Zakhidov, A. A., Lee, S. B., Aliev, A. E., Williams, C. D., Baughman, R. H.. Physica B: Condensed Matter 394, 339 (2007).CrossRefGoogle Scholar
Zhang, M., Atkinson, K. R., Baughman, R. H.. Science 306, 1358 (2004).CrossRefGoogle Scholar
Bronikowski, M. J.. Carbon 107, 297 (2016).CrossRefGoogle Scholar
Ratke, L. and Voorhees, P.. (Springer-Verlag, Berlin, 2002), pp. 117, 118. ISBN 3-540-42563-2Google Scholar
Vengrenovich, R. D., Gudyma, Y. V., and Yarema, S. V.. Semiconductors 35, 1378 (2001).CrossRefGoogle Scholar
Zhang, R. F., Xie, H. H., Zhang, Y. Y., Zhang, Q., Jin, Y. G., Li, P., Qian, W. Z. and Wei, F.. Carbon 52, 232 (2013).CrossRefGoogle ScholarPubMed
Bronikowski, M. J.. J. Phys Chem. C 111, 17705 (2007).CrossRefGoogle Scholar
Hafner, J. H., Bronikowski, M. J., Azamian, B. R., Nikolaev, P., Rinzler, A. G., Colbert, D. T., Smith, K. A. and Smalley, R. E.. Chem. Phys. Lett. 296, 195 (1998).CrossRefGoogle Scholar
Huang, S., Woodson, M., Smalley, R. E., Liu, J.. Nano Letters 4, 1025 (2004).CrossRefGoogle Scholar
Cho, W., Schulz, M., and Shanov, V.. Carbon 72, 264 (2014).CrossRefGoogle Scholar
Kitiyanan, B., Alvarez, W., Harwell, D., and Resasco, D.. Chem. Phys Lett. 317, 498 (2000).CrossRefGoogle Scholar
Xiong, G. Y., Wang, D. Z., and Ren, Z. F.. Carbon 44, 969 (2006).CrossRefGoogle Scholar
Yun, Y., Shanov, V., Tu, Y., Subramaniam, S., and Schulz, M.. J. Phys. Chem. B 110, 23920 (2006).CrossRefGoogle Scholar
Puretzky, A., Geohegan, D., Jesse, S., Ivanov, I., Eres, G.. Appl. Phys. A 81, 223 (2005).CrossRefGoogle Scholar
Li, Q. W., Zhang, X. F., DePaula, R. F., Zheng, L. X., Zhao, Y. H., Stan, L., Holesinger, T., Arendt, P. N., Peterson, D. E., Zhu, Y. T.. Adv. Mater. 18, 3160 (2006).CrossRefGoogle Scholar
Futaba, D., Hata, K., Yamada, T., Mizuno, K., Yumura, M., Iijima, S.. Phys. Rev. Lett. 95, 056104 (2005).CrossRefGoogle Scholar
Cassell, A. M., Raymakers, J. A., Kong, J., Dai, H. J.. J. Phys. Chem. B 103, 6484 (1999).CrossRefGoogle Scholar
Venegoni, D., , D., Serp, P., Feurer, R., Kihn, Y., Vahlas, C., Kalck, P., P. Carbon 40, 1799 (2002).CrossRefGoogle Scholar
Cui, H., Eres, G., Howe, J. Y., Puretkzy, A., Varela, M., Geohegan, D. B., Lowndes, D. H.. Chem. Phys. Lett. 374, 222 (2003).CrossRefGoogle Scholar
Dai, H., Rinzler, A. G., Nikolaev, P., Thess, A., Colbert, D. T., Smalley, R. E.. Chem. Phys. Lett. 260, 471 (1996).CrossRefGoogle Scholar