Article contents
Reconfiguration of van der Waals Gaps as the Key to Switching in GeTe/Sb2Te3 Superlattices
Published online by Cambridge University Press: 21 May 2018
Abstract
GeTe/Sb2Te3 superlattices, also known as interfacial phase-change memory (iPCM), exhibit significantly faster switching and are characterized by much lower power consumption and longer data retention compared to devices based on alloyed materials. In early work, the superior performance of iPCM was linked to a crystal-crystal transition between the SET and RESET states. As the primary mechanism, a change in the stacking order of Ge and Te planes within a GeTe block was suggested. Subsequent STEM studies on epitaxial GeTe/Sb2Te3 superlattices demonstrated that the GeTe blocks were not located between Sb2Te3 quintuple layers but, were incorporated inside the latter, providing a serious challenge to the early explanation. In this work, we demonstrate that changes associated with the reconstruction of the SbTe terminating layers nearest to van der Waals gap leads to a pronounced change in the density of states and can serve as an alternative explanation for a large property contrast between the SET and RESET states in GeTe/Sb2Te3 superlattices.
Keywords
- Type
- Articles
- Information
- Copyright
- Copyright © Materials Research Society 2018
References
- 4
- Cited by