Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T09:45:46.144Z Has data issue: false hasContentIssue false

Raman spectroscopy of nanograins, nanosheets and nanorods of copper oxides obtained by anodization technique.

Published online by Cambridge University Press:  04 November 2019

M. Díaz-Solís
Affiliation:
Centro de Investigación en Micro y Nanotecnología, Universidad Veracruzana, Adolfo Ruiz Cortines 455, C.P.94294, Boca del Río, México.
A. Báez-Rodríguez
Affiliation:
Centro de Investigación en Micro y Nanotecnología, Universidad Veracruzana, Adolfo Ruiz Cortines 455, C.P.94294, Boca del Río, México.
J. Hernández-Torres
Affiliation:
Centro de Investigación en Micro y Nanotecnología, Universidad Veracruzana, Adolfo Ruiz Cortines 455, C.P.94294, Boca del Río, México.
L. García-González
Affiliation:
Centro de Investigación en Micro y Nanotecnología, Universidad Veracruzana, Adolfo Ruiz Cortines 455, C.P.94294, Boca del Río, México.
L. Zamora-Peredo*
Affiliation:
Centro de Investigación en Micro y Nanotecnología, Universidad Veracruzana, Adolfo Ruiz Cortines 455, C.P.94294, Boca del Río, México.
*
Get access

Abstract

Different nanostructures such as: CuOH nanorods, CuO nanosheets and Cu2O nanograins were obtained by anodization approach at room temperature during times from 10 to 40 minutes. By scanning electron microscopy technique, it was found that Cu2O nanograins were formed at 10 minutes, CuO nanosheets vertically oriented on nanograins were observed at 20 and 30 minutes, and from 20 minutes CuOH nanorods with low vertical orientation on nanosheets were formed, coexisting the three types of nanostructures at the same system. In samples without thermal treatment were observed that Raman spectra of nanograins have a typical signal at 218 cm-1 associated to Cu2O, Raman spectra of nanosheets have signals at 287 and 630 cm-1 associated to CuO and Raman spectra of nanorods, it was observed that Raman spectrum is dominated by an intense signal associated to CuOH located around 488cm-1. In addition, after 3 hours of thermal treatment at 300 °C, the morphology was conserved, and the hydrogen-related compound decreased. Raman spectra of nanorods only presented a signal at 287 cm-1 associated to CuO whereas in nanosheets three peaks at 150, 218, 304 cm-1 associated to the Cu2O were observed.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Referencias

Camacho, S. A., Sobral-Filho, R. G., Aoki, P. H. B., Constantino, C. J. . L. and Brolo, A. G., ASC Sensor, 3 (3), 587-594, (2018).Google Scholar
Eranna, G., Metal oxide nanostructures as Gas sensing devices, 1st ed., (CRC Press,India, 2012) p. 60-67.Google Scholar
Kiani, F., Astani, N. A., Rahighi, R., Tayyebi, A., Tayebi, M., Khezri, J., Hashemi, E., Rothlisberger, U. and Simchi, A., J. Colloid Interface Sci, 521, 119-131, (2018).CrossRefGoogle Scholar
Nguyen, C. T., Nguyen, J. T., Rutledge, S., Zhang, J., Wang, C. and Walker, G. C., Cancer Lett., 292 (1), 91-97, (2010).CrossRefGoogle Scholar
Quian, K., Wang, Y., Hua, L., Chen, A. and Zhang, Y., Thoracic Cancer , 9 (11), 1-6, (2018).Google Scholar
Abboud, Y., Saffaj, T., Chagraoui, A., El Bouari, A., Brouzi, K., Tanane, O. and Ihssane, B., Applied Nanoscience, 4 (5), 571-576, (2014).CrossRefGoogle Scholar
Altaweel, A., Filipič, G., Gries, T. and Belmonte, T., J. Cryst Growth, 407, 17-24, (2014).CrossRefGoogle Scholar
Debbichi, L., Marco de Lucas, M. C., Pierson, J. F. and Krüger, P., J. Phys. Chem. C, 116 (18), 1032-10237, (2012).CrossRefGoogle Scholar
Reichardt, W., Gompf, F., Aïn, M. and Wanklyn, B. M., Condensed Matter, 81 (1), 19-24, (1990).Google Scholar
Deng, Y., Handoko, A. D., Du, Y., Xi, S. and Yeo, B., ACS Catal. 6 (4), 2473-2481, (2016).CrossRefGoogle Scholar
Wu, S., Fu, G., Lv, W., Wei, J., Chen, W., Yi, H., Gu, M., Bai, X., Zhu, L., Tan, C., Liang, Y., Zhu, G., He, J., Wang, X., Zhang, K. H. L., Xiong, J. and He, W., Small, 14 (5),1702667, (2018).CrossRefGoogle Scholar
Siddiqui, H., Parra, M. R., Qureshi, M. S., Malik, M. M. and Haque, F. Z., J. Mat. Sci , 53 (12), 8826-8843, (2018).CrossRefGoogle Scholar
Genc, A., J. Natural App. Sci. 22 (2), 394-401, (2018).Google Scholar
Zimbovskiy, D. S., Gavrilov, A. I. and Churagulov, B. R., IOP Conference Series: Mat. Sci. Eng. 347 (1), 1-6, (2018).CrossRefGoogle Scholar
Dawson, P., Hargreave, M. M. and Wilkinson, G. R., J. Phys. Chem. Solids, 34, 2201-2208, (1973).CrossRefGoogle Scholar
Balkansk, M., Nusimovici, M. A. and Reydellet, J., Solid State Comunications, 7 (11), 815-818, (1969).CrossRefGoogle Scholar
Chrzanowski, J. and Irwin, J. C., Solid State Communications, 70 (1), 11-14, (1989).CrossRefGoogle Scholar
Xu, J. F., Ji, W., Shen, Z. X., Li, W. S., Tang, S. H., Ye, X. R., Jia, D. Z. and Xin, X. Q., J. Raman Spectrocopy, 30 (5), 413-415, (1999).3.0.CO;2-N>CrossRefGoogle Scholar
Goldstein, H. F., Kim, D. s., Yu, P. Y. and Bourne, L. C., Phys. Rev. B, 41 (10), 7192, (1990).CrossRefGoogle Scholar
Günter, J. R. and Oswald, H. R., J. Appl. Cryst, 3, 21-26, (1970).CrossRefGoogle Scholar
Cudennec, Y. y Lecerf, A., Solid State Sci., 5 (11-12), 1471-1474, (2003).CrossRefGoogle Scholar