Article contents
Quantifying Grain Level Stress-Strain Behavior for AM40 via Instrumented Microindentation
Published online by Cambridge University Press: 13 January 2016
Abstract
Microindentation is performed on hot isostatic pressed (HIP) Mg-Al (AM40) alloy samples produced by high-pressure die cast (HPDC) process for the purpose of quantifying the mechanical properties of the α-Mg grains. The process of obtaining elastic modulus and hardness from indentation load-depth curves is well established in the literature. A new inverse method is developed to extract plastic properties in this study. The method utilizes empirical yield strength-hardness relationship reported in the literature together with finite element modeling of the individual indentation. Due to the shallow depth of the indentation, indentation size effect (ISE) is taken into account when determining plastic properties. The stress versus strain behavior is determined for a series of indents. The resulting average values and standard deviations are obtained for future use as input distributions for microstructure-based property prediction of AM40.
- Type
- Articles
- Information
- MRS Advances , Volume 1 , Issue 12: Mechanical Behavior and Failure of Materials , 2016 , pp. 761 - 772
- Copyright
- Copyright © Materials Research Society 2016
References
REFERENCES
- 11
- Cited by