Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T05:19:59.515Z Has data issue: false hasContentIssue false

Preparation and Characterization of Solar Thermal Absorbers by Nanoimprint Lithography and Sputtering

Published online by Cambridge University Press:  24 June 2019

Tina Mitteramskogler*
Affiliation:
PROFACTOR GmbH, Im Stadtgut A2, 4407Steyr-Gleink, Austria
Michael J. Haslinger
Affiliation:
PROFACTOR GmbH, Im Stadtgut A2, 4407Steyr-Gleink, Austria
Ambiörn Wennberg
Affiliation:
Nano4Energy SL, José Gutiérrez Abascal 2, 28006Madrid, Spain
Iván Fernandez-Martínez
Affiliation:
Nano4Energy SL, José Gutiérrez Abascal 2, 28006Madrid, Spain
Michael Muehlberger
Affiliation:
PROFACTOR GmbH, Im Stadtgut A2, 4407Steyr-Gleink, Austria
Matthias Krause
Affiliation:
Helmholtz-Zentrum Dresden-Rossendorf e.V., Bautzner Landstraße 400, 01328Dresden, Germany
Elena Guillén
Affiliation:
PROFACTOR GmbH, Im Stadtgut A2, 4407Steyr-Gleink, Austria
*
Get access

Abstract

Selective solar absorbers comprised of plasmonic materials offer great flexibility in design along with a highly promising optical performance. However, the nanopattern generation, typically done with electron beam writing, is a very time-intensive process. In this work, we present a fast, scalable, and flexible method for the fabrication of plasmonic materials by the combination of a deposition mask prepared by nanoimprint lithography and thin film deposition by magnetron sputtering. The fabrication process was first performed on silicon wafer substrates using AFM and SEM measurements to calibrate the deposition time, determine maximal deposition height, and characterize samples. Afterwards, the process was transferred to polished Inconel NiCr-alloy substrates used in high temperature solar absorbers. To investigate the adhesion properties of the nanostructure on the substrate, two different deposition methods were investigated: DC magnetron sputtering and High Power Impulse Magnetron Sputtering (HiPIMS).

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bermel, P., Lee, J., Joannopoulos, J.D., Celanovic, I., and Soljacie, M., Annual Review of Heat Transfer, 15, 231254 (2012).CrossRefGoogle Scholar
Azad, A.K., Kort-Kamp, W.J.M., Sykora, M., Weisse-Bernstein, N.R., Luk, T.S., Taylor, A.J., Dalvit, D.A.R., and Chen, H.-T., Scientific Reports, 6, (2016).Google Scholar
Li, Y., Li, D., Zhou, D., Chi, C., Yang, S., and Huang, B., Solar RRL, 2, 1800057 (2018).CrossRefGoogle Scholar
Wang, H., Prasad Sivan, V., Mitchell, A., Rosengarten, G., Phelan, P., and Wang, L., Solar Energy Materials and Solar Cells, 137, 235242 (2015).CrossRefGoogle Scholar
Khodasevych, I.E., Wang, L., Mitchell, A., and Rosengarten, G., Advanced Optical Materials, 3, 852881 (2015).CrossRefGoogle Scholar
Araghchini, M., Yeng, Y.X., Jovanovic, N., Bermel, P., Kolodziejski, L.A., Soljacic, M., Celanovic, I., and Joannopoulos, J.D., Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 29, 061402 (2011).CrossRefGoogle Scholar
Han, X., He, K., He, Z., and Zhang, Z., Optics Express, 25, A1072 (2017).CrossRefGoogle Scholar
Cheng, C.-W., Abbas, M.N., Chiu, C.-W., Lai, K.-T., Shih, M.-H., and Chang, Y.-C., Optics Express, 20, 1037610381 (2012).CrossRefGoogle Scholar
Cao, F., McEnaney, K., Chen, G., and Ren, Z., Energy & Environmental Science, 7, 1615 (2014).CrossRefGoogle Scholar
Köpplmayr, T., Häusler, L., Bergmair, I., and Mühlberger, M., Surface Topography: Metrology and Properties, 3, 024003 (2015).Google Scholar
Schift, H., Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 26, 458 (2008).CrossRefGoogle Scholar
Rinnerbauer, V., Lausecker, E., Schäffler, F., Reininger, P., Strasser, G., Geil, R.D., Joannopoulos, J.D., Soljačić, M., and Celanovic, I., Optica, OPTICA, 2, 743746 (2015).CrossRefGoogle Scholar
Kim, J.-M., Park, K.-H., Kim, D.-S., Hwang, B., Kim, S.-K., Chae, H.-M., Ju, B.-K., and Kim, Y.-S., Applied Surface Science, 429, 138143 (2018).CrossRefGoogle Scholar
Wu, D., Liu, Y., Xu, Z., Yu, Z., Yu, L., Chen, L., Liu, C., Li, R., Ma, R., Zhang, J., and Ye, H., Solar RRL, 1, 1700049 (2017).CrossRefGoogle Scholar
PMGI & LOR Lift-off Resists (2019), Available at: http://microchem.com/Prod-PMGI_LOR.htm, (accessed 08 May 2019).Google Scholar
Nanoimprint Resists (2019), Available at: https://www.microresist.de/en/product/nanoimprint-resists, (accessed 08 May 2019).Google Scholar
Gordillo, N., Panizo-Laiz, M., Tejado, E., Fernandez-Martinez, I., Rivera, A., Pastor, J.Y., de Castro, C.G., del Rio, J., Perlado, J.M., and Gonzalez-Arrabal, R., Applied Surface Science, 316, 18 (2014).CrossRefGoogle Scholar
Nagel, R.D., Filser, S., Zhang, T., Manzi, A., Schönleber, K., Lindsly, J., Zimmermann, J., Maier, T.L., Scarpa, G., Krischer, K., and Lugli, P., Journal of Applied Physics, 121, 084305 (2017).CrossRefGoogle Scholar
Anders, A., Surface and Coatings Technology, 257, 308325 (2014).CrossRefGoogle Scholar
Rinnerbauer, V., Shen, Y., Joannopoulos, J.D., Soljačić, M., Schäffler, F., and Celanovic, I., Opt. Express, OE, 22, A1895A1906 (2014).CrossRefGoogle Scholar