Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T19:38:07.537Z Has data issue: false hasContentIssue false

Predictive topography impact model for Electrical Discharge Machining (EDM) of metal surfaces

Published online by Cambridge University Press:  18 November 2019

Johan Bäckemo
Affiliation:
Institute of Biomaterial Research and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstrasse 55, 14513 Teltow, Germany Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany
Matthias Heuchel
Affiliation:
Institute of Biomaterial Research and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstrasse 55, 14513 Teltow, Germany
Markus Reinthaler
Affiliation:
Institute of Biomaterial Research and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstrasse 55, 14513 Teltow, Germany Department of Cardiology, Campus Benjamin Franklin, Charité Berlin, Berlin, Germany
Karl Kratz
Affiliation:
Institute of Biomaterial Research and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstrasse 55, 14513 Teltow, Germany
Andreas Lendlein*
Affiliation:
Institute of Biomaterial Research and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstrasse 55, 14513 Teltow, Germany Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany
*
*To whom correspondence should be addressed: Prof. Dr. Andreas Lendlein, email: [email protected]
Get access

Abstract

Electrical discharge machining (EDM) is a method capable of modifying the microstructure of metal surfaces. Here, we present a predictive computer supported model of the roughness generated on the surface by this process. EDM is a stochastic process, in which charge generated between a metallic substrate and an electrode creates impacts, and thus is suitable for modeling through iterative simulations. The resulting virtual, modified surface structures were evaluated for roughness. Curvatures were analyzed using Abbott-Firestone curves. Three radii of impacts (10, 20, 30 μm) and two values for the depth to radius ratio (0.1, 0.3) were used as input parameters to compute a total of six simulations. It was found that the roughness parameters followed an inverse exponential trend as a function of impact number, and that the strongly concave curvatures reached equilibrium at an earlier impact number for lower depth to radius ratios.

Type
Articles
Copyright
Copyright © Materials Research Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kumar, S., Singh, R., Singh, T.P., and Sethi, B.L., J. Mater. Process. Technol. 209, 3675 (2009).CrossRefGoogle Scholar
Gostimirovic, M., Kovac, P., Sekulic, M., and Skoric, B., J. Mech. Sci. Technol. 26, 173 (2012).CrossRefGoogle Scholar
Yu, Z., Rajurkar, K.P., and Narasimhan, J., ASPE Precis. Mach. Annu. Portland, OR (2003).Google Scholar
Vulliez, M., Gleason, M.A., Souto-Lebel, A., Quinsat, Y., Lartigue, C., Kordell, S.P., Lemoine, A.C., and Brown, C.A., Procedia CIRP 13, 308 (2014).CrossRefGoogle Scholar
George, J. and Chandrasekaran, M., in Asp. Mech. Eng. Technol. Ind. (Nirjuli, India, 2014), pp. 278284.Google Scholar
Aliyu, A.A., Abdul-Rani, A.M., Ginta, T.L., Prakash, C., Axinte, E., Razak, M.A., and Ali, S., Adv. Mater. Sci. Eng. 2017, (2017).Google Scholar
Ding, H., Li, X., Wang, X., Guo, L., and Zhao, L., in Proc. 2nd Int. Conf. Adv. Mech. Eng. Ind. Informatics (AMEII 2016) (Atlantis Press, Paris, France, 2016), pp. 13161320.Google Scholar
Yang, X., Guo, J., Chen, X., and Kunieda, M., Precis. Eng. 35, 51 (2011).CrossRefGoogle Scholar
Tao, J., Ni, J., and Shih, A.J., J. Manuf. Sci. Eng. Trans. ASME 134, 1 (2012).CrossRefGoogle Scholar
Bartkowiak, T. and Brown, C.A., J. Manuf. Sci. Eng. 140, (2018).CrossRefGoogle Scholar
Arooj, S., Shah, M., Sadiq, S., Jaffery, S.H.I., and Khushnood, S., Arab. J. Sci. Eng. 39, 4187 (2014).CrossRefGoogle Scholar
ISO CD 25178-2:2012Geometrical Product Specification (GPS) – Surface Texture: Areal – Part 2: Terms definitions and surface texture parameters,” Geneva Int. Organ. Stand. (2012).Google Scholar
Laheurte, R., Darnis, P., Darbois, N., Cahuc, O., and Neauport, J., Opt. Express 20, 13551 (2012).CrossRefGoogle Scholar
Weingarten, J., J. Für Die Reine Und Angew. Math. 59, 382 (1861).Google Scholar
Gleason, M.A., Kordell, S., Lemoine, A., and Brown, C.A., in 14th Int. Conf. Metrol. Prop. Eng. Surfaces, Taipei, Taiwan, Pap. TS4-01 (2013).Google Scholar
Brown, C.A., Hansen, H.N., Jiang, X.J., Blateyron, F., Berglund, J., Senin, N., Bartkowiak, T., Dixon, B., Le Goïc, G., Quinsat, Y., Stemp, W.J., Thompson, M.K., Ungar, P.S., and Zahouani, E.H., CIRP Ann. 67, 839 (2018).CrossRefGoogle Scholar