Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T11:41:04.513Z Has data issue: false hasContentIssue false

Physicochemical characterization of Pt and Ir particles deposited on Ce(1-x)Ru(x)O2 solid-solutions for CO oxidation

Published online by Cambridge University Press:  18 November 2019

E. Gonzalez-A
Affiliation:
División de Estudios de posgrado de la Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México.
R. Rangel*
Affiliation:
División de Estudios de posgrado de la Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México.
J. Lara
Affiliation:
División de Estudios de posgrado de la Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México.
J. J. Alvarado
Affiliation:
Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados del Instituto Politecnico Nacional-Unidad Mérida, Mérida, Yucatán, México.
P. Bartolo
Affiliation:
Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados del Instituto Politecnico Nacional-Unidad Mérida, Mérida, Yucatán, México.
*
Get access

Abstract

Pt/Ce1-xRuxO2 and Ir/Ce1-xRuxO2 catalysts were prepared through the sol-gel technique, under microwave heating. In a first step, the Ce1-xRuxO2 solid solutions were prepared. Subsequently, an incipient wet impregnation process was carried out to homogeneously achieve the dispersion, either of platinum or iridium nanoparticles. The Pt/Ce1-xRuxO2 and Ir/Ce1-xRuxO2 catalysts were characterized by means of SEM, XRD, XPS, TEM, and specific surface area measurements. Crystal size and shifting into the CeO2 structure were detected after ruthenium doping producing the Ce1-xRuxO2 solid-solutions. Trough XPS technique Pt and Ir nanoparticles were found evenly dispersed in a metallic state. Those features allow us to foresee that, in the near future, these materials could be used efficiently as catalysts for oxidation process.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bouzigues, C., Gacoin, T., Alexandrou, A., ACS Nano. 5, 84888505 (2011).CrossRefGoogle Scholar
Bettinelli, M., Carlos, L., Liu, X., Phys. Today. 68, 3844 (2015).CrossRefGoogle Scholar
Trovarelli, A., de Leitenburg, C., Boaro, M., Dolcetti, G., Catal. Today. 50, 353367 (1999).CrossRefGoogle Scholar
Cargnello, M., Doan-Nguyen, V.V.T., Gordon, T.R., Diaz, R.E., Stach, E.A., Gorte, R.J., Fornasiero, P., Murray, C.B., Science 341, 771773 (2013).CrossRefGoogle Scholar
Matarrese, R., Morandi, S., Castoldi, L., Villa, P., Lietti, L., Appl. Catal. B Environ. 201, 318330 (2017).CrossRefGoogle Scholar
Mar, S.Y., Chen, C.S., Huang, Y.S., Tiong, K.K., Appl. Surf. Sci. 90, 497504 (1995).CrossRefGoogle Scholar
Liao, P.C., Mar, S.Y., Ho, W.S., Huang, Y.S., Tiong, K.K., Thin Solid Films. 287, 7479 (1996).CrossRefGoogle Scholar
Topka, P., Delaigle, R., Kaluža, L., Gaigneaux, E.M., Catal. Today. 253, 172177 (2015).CrossRefGoogle Scholar
Seth, J., Nepak, D., Chaudhari, V.R., Prasad, B.L.V., Appl. Surf. Sci. 418, 8791 (2017).CrossRefGoogle Scholar
Mandapaka, R., Madras, G., Appl. Catal. B Environ. 211, 137147 (2017).CrossRefGoogle Scholar
Huang, Y., Wang, A., Li, L., Wang, X., Su, D., Zhang, T., J. Catal. 255, 144152 (2008).CrossRefGoogle Scholar
Germani, G., Alphonse, P., Courty, M., Schuurman, Y., Mirodatos, C., Catal. Today. 110, 114120 (2005).CrossRefGoogle Scholar
Siang, J.-Y., Lee, C.-C., Wang, C.-H., Wang, W.-T., Deng, C.-Y., Yeh, C.-T., Wang, C.-B., Int. J. Hydrogen Energy. 35, 34563462 (2010).CrossRefGoogle Scholar
Haruta, M., Yamada, N., Kobayashi, T., Iijima, S., J. Catal. 115, 301309 (1988).CrossRefGoogle Scholar
Zanella, R., Rev. Interdiciplinaria En Nanociencias y Nanotecnologia. 5, 6981 (2012).Google Scholar
Claudio-piedras, A., Ramírez-zamora, R.M., Alcántar-vázquez, B.C., Gutiérrez-martínez, A., Modragón-galicia, G., Morales-anzures, F., doi: http://10.1016/j.cattod.2019.08.013, in Press , (2019).Google Scholar
Piotrowski, T., Accinno, D.J., Metallography of the precious metals, Metallography. 10, 243289 (1977).CrossRefGoogle Scholar
Imanaka, N., Masui, T., Imadzu, H., Yasuda, K., Chem. Commun. 47, 11032 (2011).CrossRefGoogle Scholar
Chang, G., Shu, H., Huang, Q., Oyama, M., Ji, K., Electrochim. Acta. 157, 149157 (2015).CrossRefGoogle Scholar
Moulder, J.F., Stickle, W.F., Sobol, P.E., Bomben, K.D., Handbook of X-Ray Photoelectron Spectroscopy, (2002).Google Scholar