Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-10T21:13:44.828Z Has data issue: false hasContentIssue false

Perovskite gels combustion synthesis from rare earth aluminates. Development of multifuncional properties.

Published online by Cambridge University Press:  09 December 2020

A. Barrera*
Affiliation:
Facultad de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Universidad Nacional Autónoma de México, Ciudad de México, 04510 México
M.L. Chávez
Affiliation:
Facultad de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Universidad Nacional Autónoma de México, Ciudad de México, 04510 México
E. Chavira
Affiliation:
Instituto de Materiales, Universidad Nacional Autónoma de México, Cd. Universitaria. Cd. Mx., 04510 México.
T.A. García
Affiliation:
Facultad de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Universidad Nacional Autónoma de México, Ciudad de México, 04510 México
J.M.E. Carreto
Affiliation:
Facultad de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Universidad Nacional Autónoma de México, Ciudad de México, 04510 México
Get access

Abstract

The purpose of this work was the synthesis of the perovskites with rare earth, by gel combustion method with pigmenting, magnetic and luminescent properties. The synthesis of perovskite structure is important for material development, with multi features. In this work, the synthesis was from metal oxides by the method of combustion of gels at 500 °C, for 10 s. Color of perovskites obtained, with nanometric particle size (31-44 nm) was analysed by CIEL*a*b* with tonalities ranged from white to pink except for Pr-perovskites with yellow and brown. Its paramagnetic properties were verified by magnetic susceptibility. Its luminescence was at 260 nm, except for Pr-perovskites. This work opens an important opportunity to develop ceramic pigments with perovskites structures integrating other properties as luminescence and paramagnetism by combustion sol-gel method.

Type
Articles
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kingsley, J.J. and Patil, K.C., “A novel combustion process for the synthesis of fine particle α-alumina and related oxide materials ,” Materials Letters., vol. 6, pp. 427-432, 1988.10.1016/0167-577X(88)90045-6CrossRefGoogle Scholar
Upadhyay, K., Tamrakar, R. K., and Dubey, V., “High temperature solid state synthesis and photoluminescence behavior of Eu3+ doped GdAlO3 nanophosphor,” Superlattices Microstruct., vol. 78, pp. 116124, 2015.10.1016/j.spmi.2014.11.030CrossRefGoogle Scholar
Vasylechko, L., Semiconductor electronic Dept., L´viv Polytechnic National Univ., Ukranie. ICDD Grant-in-Aid, 2013.Google Scholar
Cruciani, G., Matteucci, F., Dondi, M., Baladi, G., Barzanti, A. Z., Kristallogr ”Structural variations of Cr-doped (Y,REE)AlO3 perovkites”, Kristallogr. 220, 930, 2005.Google Scholar
Tamrakar, R. K., Upadhyay, K., and Sahu, M., “Spectral characterization of Er3+, Yb3+co doped GdAlO3phosphor prepared by solid state reaction method,” J. Alloys Compd., vol. 689, pp. 702712, 2016.CrossRefGoogle Scholar
Binnemans, K., “Interpretation of europium(III) spectra,” Coord. Chem. Rev., vol. 295, pp. 145, 2015.CrossRefGoogle Scholar
Saji, S. K., Raju, K., and Wariar, P. R. S., “Structural and optical characterization of DyAlO3 perovskite powders obtained by combustion synthesis,” AIP Conf. Proc., vol. 1728, no. May, pp. 48, 2016.Google Scholar
Matos, M. G., Calefi, P. S., Ciuffi, K. J., and Nassar, E. J., “Synthesis and luminescent properties of gadolinium aluminates phosphors,” Inorganica Chim. Acta, vol. 375, no. 1, pp. 6369, 2011.CrossRefGoogle Scholar
Lojpur, V., Ćulubrk, S., Medić, M., and Dramicanin, M., “Luminescence thermometry with Eu3+ doped GdAlO3,” J. Lumin., vol. 170, pp. 467471, 2016.10.1016/j.jlumin.2015.06.032CrossRefGoogle Scholar
Sandeep, D. P., Rai, A., Shankar, M. P., Ghimire, R., Khenata, and R. K. Thapa, , “Study of electronic and magnetic properties in 4f electron based cubic EuAlO3: A first-principles calculation,” Phys. Scr., vol. 90, no. 6, 2015..Google Scholar
Wang, X-L., Yang, Z, Li, J., Fu, W-F., Tang, P., Chen, Y-F., Guo, J., Gao, Z-H., Huang, Y., Tao, Y., “Hydrothermal synthesis, morphology and luminescent properties of GdAlO3:Eu3+ microcrystals,” J. Alloys Compd., vol. 614, pp. 4043, 2014.CrossRefGoogle Scholar
Remya, G. R., Solomon, S., Thomas, J. K., and John, A., “Optical properties of PrAlO3 nano ceramic,” vol. 102, no. February 2015, pp. 102105, 2014.CrossRefGoogle Scholar
Oliveira, H. H. S., Cebim, M. A., Da Silva, A. A., and Davolos, M. R., “Structural and optical properties of GdAlO3:RE3+ (RE = Eu or Tb) prepared by the Pechini method for application as X-ray phosphors,” J. Alloys Compd., vol. 488, no. 2, pp. 619623, 2009.CrossRefGoogle Scholar
Hernández-Pérez, C. D., García-Hipólito, M., Álvarez-Pérez, M. A., Álvarez-Fregoso, O., Ramos-Brito, F., and Falcony, C., “Luminescent characteristics of praseodymium-doped zinc aluminate powders,” Phys. Status Solidi Appl. Mater. Sci., vol. 207, no. 2, pp. 417422, 2010.CrossRefGoogle Scholar
María, J., Soto, D., Delia, A., Gutiérrez, R., Prieto, F., and Acevedo, O., “Sistema de Notación Munsell y CIELab como herramienta para evaluación de color en suelos * Munsell Notation System and CIELab as a tool for evaluation colors in soils Resumen Introducción Antecedentes,” Rev. Mex. Ciencias Agrícolas, vol. 3, no. 1, pp. 141155, 2012.Google Scholar
Dominguez, J. S., Roman, A. G., Prieto, F. G., and Acevedo, O. S., “Sistema de Notación Munsell y CIELab como herramienta para evaluación de color en suelos,” Rev. Mex. Ciencias Agrícolas, vol. 3, no. 1, pp. 141155, 2010.CrossRefGoogle Scholar
Mimani, T., Ghosh, S.Combustion synthesis of cobalt pigments: Blue and pink, ” Current Scince, vol. 78, no. 7, pp. 892-896, 2000.Google Scholar
Hirsch, J. E., “The origin of the Meissner effect in new and old superconductors,” Phys. Scr., vol. 85, no. 3, 2012, doi: 10.1088/0031-8949/85/03/035704.CrossRefGoogle Scholar
Petrov, D., Angelov, B., and Lovchinov, V., “Magnetic susceptibility and surface properties of EuAlO3 nanocrystals,” J. Alloys Compd., vol. 509, no. 16, pp. 50385041, 2011, doi: 10.1016/j.jallcom.2011.02.003.CrossRefGoogle Scholar
Petrov, D., Angelov, B., and Lovchinov, V., “Metamagnetic DyAlO3 nanoparticles with very low magnetic moment,” J. Sol-Gel Sci. Technol., vol. 58, no. 3, pp. 636641, 2011, doi: 10.1007/s10971-011-2438-3.CrossRefGoogle Scholar