Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-26T16:56:07.966Z Has data issue: false hasContentIssue false

Parameter Optimizations for Square-Wave Anodic Stripping Voltammetry for Cadmium Detection Using Boron-Doped Diamond Electrodes with Different Doping Levels

Published online by Cambridge University Press:  23 January 2017

André F. Sardinha
Affiliation:
Associated Laboratory of Sensors and Materials, National Institute for Space Research, São José dos Campos, SP, 12227-010, Brazil. Federal University of São Paulo, São José dos Camos, SP, 12247-014, Brazil.
Lilian M. Silva*
Affiliation:
Associated Laboratory of Sensors and Materials, National Institute for Space Research, São José dos Campos, SP, 12227-010, Brazil.
Neidenêi G. Ferreira
Affiliation:
Associated Laboratory of Sensors and Materials, National Institute for Space Research, São José dos Campos, SP, 12227-010, Brazil.
*
Get access

Abstract

The parameter optimizations of square-wave anodic stripping voltammetry using boron doped diamond (BDD) electrodes with different doping levels for cadmium detection were studied. The optimized relation among the peak current with the pulse frequency, the amplitude, and the potential increment for highly (1019 cm-3) and heavily BDD (1021 cm-3) electrodes was considered. The peak currents were measured around -0.75 V vs. Ag/AgCl for Cd2+ concentration ranged from 1 to 20 ppb. Both BDD films provided detection limits lower than 5 ppb showing that these electrodes are suitable to use in a mercury-free method to determine cadmium trace levels in water.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Järup, L., Br. Med. Bull., 68, 167182 (2003).CrossRefGoogle Scholar
Chomisteková, Z., Sochr, J., Svítková, J., and Švorc, Ľ., Acta Chim. Slovaca, 4, 1117 (2011).Google Scholar
El Tall, O., Jaffrezic-Renault, N., Sigaud, M., and Vittori, O., Electroanalysis, 19, 11521159 (2007).CrossRefGoogle Scholar
Sugitani, A., Watanabe, T., Ivandini, T. A., Iguchi, T. and Einaga, Y., Phys. Chem. Chem. Phys., 15, 142147 (2013)CrossRefGoogle Scholar
Show, Y., Witek, M. A., Sonthalia, P., and Swain, G. M., Chem. Ma, 15, 879888 (2003).Google Scholar
Zhang, T., Li, C., Mao, B., and An, Y., Ionics, 21, 17611769 (2015).Google Scholar
McGaw, E.A. and Swain, G.M. Anal. Chim. Acta, 575, 180189 (2006).Google Scholar
May, P.W., Ludlow, W.J., Hannaway, M., Heard, P.J., Smith, J. a., and Rosser, K.N., Diam. Relat. Mater., 17, 105117 (2008).Google Scholar
Ager, J.W., Walukiewicz, W., McCluskey, M., Plano, M.A., and Landstrass, M.I., Appl. Phys. Lett., 616 (1995).Google Scholar
Wang, X.H., Ma, G.H.M., Zhu, W., Glass, J.T., Bergman, L., Turner, K.F., and Nemanich, R.J., Diam. Relat. Mater., 1, 828835 (1992).Google Scholar
Arantes, T. M., Sardinha, A., Baldan, M. R., Cristovan, F. H., Ferreira, N. G., Talanta, 28, 132140 (2014).Google Scholar
Zachowski, E.J., Wojciechowski, M., and Osteryoung, J., Anal. Chim. Acta, 183, 4757 (1986).Google Scholar
Lovrić, M. and Komorsky-Lovrić, Š., Int. J. Electrochem., 2012, 17 (2012).Google Scholar
Harris, D.C., Análise Química Quantitativa, 8th ed., LTC, Rio de Janeiro, 2012.Google Scholar