Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T13:09:14.506Z Has data issue: false hasContentIssue false

Optical Response of Ultrathin Periodically Aligned Single-Wall Carbon Nanotube Films

Published online by Cambridge University Press:  15 May 2020

Chandra M. Adhikari
Affiliation:
Department of Mathematics & Physics, North Carolina Central University, Durham, NC27707, U.S.A.
Igor V. Bondarev
Affiliation:
Department of Mathematics & Physics, North Carolina Central University, Durham, NC27707, U.S.A.
Get access

Abstract

We present a semi-analytical expression for the dielectric response function of quasi-2D ultrathin films of periodically aligned single-walled carbon nanotubes. We derive the response function in terms of the individual nanotube conductivity, plasma frequency, and the volume fraction of carbon nanotubes in the film. The real part of the dielectric response function is negative for a sufficiently wide range of the incident photon energy, indicating that the film behaves as a hyperbolic metamaterial. Inhomogeneous broadening increases the effect.

Type
Articles
Copyright
Copyright © 2020 Materials Research Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Roberts, J. A., Yu, S.-J., Ho, P.-H., Schoeche, S., Falk, A. L., and Fan, J. A., “Tunable hyperbolic metamaterials based on self-assembled carbon nanotubes,” Nano Lett. 19, 3131 (2019).10.1021/acs.nanolett.9b00552CrossRefGoogle ScholarPubMed
Smith, D. R. and Schurig, D., “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90, 077405 (2003).10.1103/PhysRevLett.90.077405CrossRefGoogle ScholarPubMed
Bondarev, I. V., “Finite-thickness effects in plasmonic films with periodic cylindrical anisotropy [Invited],” Opt. Mater. Express 9, 285 (2019).10.1364/OME.9.000285CrossRefGoogle Scholar
Keldysh, L. V., “Coulomb interaction in thin semiconductor and semimetal films,” Pis'ma Zh. Eksp. Teor. Fiz. 29, 716 (1979) [Engl. translation: JETP. Lett. 29, 658 (1980)].Google Scholar
Bondarev, I. V. and Shalaev, V. M., “Universal features of the optical properties of ultrathin plasmonic films,” Opt. Mater. Express 7, 3731 (2017).10.1364/OME.7.003731CrossRefGoogle Scholar
Bondarev, I. V., Mousavi, H., and Shalaev, V. M., “Optical response of finite-thickness ultrathin plasmonic films,” MRS Commun. 8, 1092 (2018).10.1557/mrc.2018.153CrossRefGoogle Scholar
Ando, T., “Theory of electronic states and transport in carbon nanotubes,” J. Phys. Soc. Jpn. 74, 777 (2005).10.1143/JPSJ.74.777CrossRefGoogle Scholar
Mahan, G. D., “Many-Particle Physics” (Kluwer Academic, New York, 2000).10.1007/978-1-4757-5714-9CrossRefGoogle Scholar
Markel, V. A., “Introduction to the Maxwell-Garnett approximation: Tutorial,” J. Opt. Soc. Am. A 33, 1244 (2016).10.1364/JOSAA.33.001244CrossRefGoogle ScholarPubMed
Bondarev, I. V. and Ph. Lambin, “van der Waals coupling in atomically doped carbon nanotubes,” Phys. Rev. B 72, 035451 (2005).10.1103/PhysRevB.72.035451CrossRefGoogle Scholar
Bondarev, I. V., “Single-wall carbon nanotubes as coherent plasmon generators,” Phys. Rev. B 85, 035448 (2012).10.1103/PhysRevB.85.035448CrossRefGoogle Scholar
Chiu, K.-C., Falk, A. L., Ho, P.-H., Farmer, D. B., Tulevski, G., Lee, Y.-H., Avouris, Ph., and Han, S.-J., “Strong and broadly tunable plasmon resonances in thick films of aligned carbon nanotubes,” Nano Lett. 17, 5641 (2017).10.1021/acs.nanolett.7b02522CrossRefGoogle ScholarPubMed
Falk, A. L., Chiu, K.-C., Farmer, D. B., Cao, Q., Tersoff, J., Lee, Y.-H., Avouris, Ph., and Han, S.-J., “Coherent plasmon and phonon-plasmon resonances in carbon nanotubes,” Phys. Rev. Lett. 118, 257401 (2017).10.1103/PhysRevLett.118.257401CrossRefGoogle ScholarPubMed
Ho, P.-H., Farmer, D. B., Tulevski, G. S., Han, S.-J., Bishop, D. M., Gignac, L. M., Bucchignano, J., Avouris, Ph., and Falk, A. L., “Intrinsically ultrastrong plasmon-exciton interactions in crystallized films of carbon nanotubes,” PNAS 115, 12662 (2018).10.1073/pnas.1816251115CrossRefGoogle ScholarPubMed
Garsia-Vidal, F. J., Pitarke, J. M., and Pendry, J. B., “Effective medium theory of the optical properties of aligned carbon nanotubes,” Phys. Rev. Lett. 78, 4289 (1997).10.1103/PhysRevLett.78.4289CrossRefGoogle Scholar
Pitarke, J. M., Garsia-Vidal, F. J., and Pendry, J. B., “Effective electronic response of a system of metallic cylinders,” Phys. Rev. B 57, 15261 (1998).10.1103/PhysRevB.57.15261CrossRefGoogle Scholar
Garsia-Vidal, F. J., Pitarke, J. M., and Pendry, J. B., “Silver-filled nanotubes used as spectroscopic enhancers,” Phys. Rev. B 58, 6783 (1998).10.1103/PhysRevB.58.6783CrossRefGoogle Scholar
Bondarev, I. V., Woods, L. M. and Tatur, K., “Strong exciton-plasmon coupling in semiconducting carbon nanotubes,” Phys. Rev. B 80, 085407 (2009).10.1103/PhysRevB.80.085407CrossRefGoogle Scholar
Bondarev, I. V. and Meliksetyan, A. V., “Possibility for exciton Bose-Einstein condensation in carbon nanotubes,” Phys. Rev. B 89, 045414 (2014).10.1103/PhysRevB.89.045414CrossRefGoogle Scholar
Bondarev, I. V., “Plasmon enhanced Raman scattering effect for an atom near a carbon nanotube,” Optics Express 23, 3971 (2015).10.1364/OE.23.003971CrossRefGoogle Scholar
Gelin, M. F. and Bondarev, I.V., “One-dimensional transport in hybrid metal-semiconductor nanotube systems,” Phys. Rev. B 93, 115422 (2016).10.1103/PhysRevB.93.115422CrossRefGoogle Scholar
Bondarev, I. V. and Popescu, A., “Exciton Bose-Einstein condensation in double walled carbon nanotubes,” MRS Advances 2, 2401 (2017).10.1557/adv.2017.435CrossRefGoogle Scholar
Vertchenko, L., Leandro, L., Shkondin, E., Takayama, O., Bondarev, I. V., Akopian, N., and Lavrinenko, A. V., “Cryogenic characterization of titanium nitride thin films,” Opt. Mater. Express 9, 2117 (2019).CrossRefGoogle Scholar