Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T05:20:58.590Z Has data issue: false hasContentIssue false

One-step synthesis and deposition of few-layer graphene via facile, dry ball-free milling

Published online by Cambridge University Press:  07 March 2017

Abdul Hai Alami*
Affiliation:
Sustainable and Renewable Energy Engineering Department, University of Sharjah, 27272, Sharjah, United Arab Emirates Center for Advanced Materials Research, University of Sharjah, 27272, Sharjah, United Arab Emirates
Kamilia Aokal
Affiliation:
Sustainable and Renewable Energy Engineering Department, University of Sharjah, 27272, Sharjah, United Arab Emirates
Mhd Adel Assad
Affiliation:
Sustainable and Renewable Energy Engineering Department, University of Sharjah, 27272, Sharjah, United Arab Emirates Center for Advanced Materials Research, University of Sharjah, 27272, Sharjah, United Arab Emirates
Di Zhang
Affiliation:
Sustainable and Renewable Energy Engineering Department, University of Sharjah, 27272, Sharjah, United Arab Emirates
Hussain Alawadhi
Affiliation:
Applied Physics and Astronomy Department, University of Sharjah, 27272, Sharjah, United Arab Emirates Center for Advanced Materials Research, University of Sharjah, 27272, Sharjah, United Arab Emirates
Bilal Rajab
Affiliation:
Sustainable and Renewable Energy Engineering Department, University of Sharjah, 27272, Sharjah, United Arab Emirates
*
*Corresponding author, phone: +971(56) 160-5355, Fax: +971(6) 558-5191, email: [email protected]
Get access

Abstract

Graphene is a 2-D carbon material showing considerable prominence in a wide range of optoelectronics, energy storage, thermal and mechanical applications. However, due to its unique features which are typically associated with difficulty in handling (ultra-thin thickness and hydrophobic surface, to name a few), synthesis and subsequent deposition processes are thus critical to the material properties of the prepared graphene films. While existing synthesis approaches such as chemical vapor deposition and epitaxial growth can grow graphene with high degree of order, the costly high temperature and/or high vacuum process prohibit the widespread usage, and the subsequent graphene transfer from the growth substrates for deposition proves to be challenging. Herein, a low-cost one-step synthesis and deposition approach for preparing few-layer graphene (FLG) on flexible copper substrates based on dry ball-free milling of graphite powder is proposed. Different from previous reports, copper substrates are inserted into the milling crucible, thus accomplishing simultaneous synthesis and deposition of FLG and eliminating further deposition step. Furthermore, while all previously reported high energy milling processes involve using balls of various sizes, we adopt a ball-free milling process relying only on centrifugal forces, which significantly reduces the surface damage of the deposition substrates. Sample characterization indicates that the process yields FLG deposited uniformly across all tested specimens. Consequently, this work takes graphene synthesis and deposition a step closer to full automation with simple and low-cost process.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Pierson HO. Handbook of carbon, graphite, diamond and fullerenes. NJ, USA: Noyes; 1993.Google Scholar
Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K. S., Roth, S. and Geim, A. K., Phys. Rev. Lett., 2006, 97, 187401.Google Scholar
Ferrari, A.C. and Robertson, J., Phys. Rev. B, 2000, 61, 14095.Google Scholar
Novoselov, K., Falko, V., Colombo, L., Gellert, P., Schwab, M., Kim, K., Nature, 2012, 490, 192200.Google Scholar
Sarma, S., Adam, S., Hwang, E., Rossi, E., Rev Mod Phys., 2011, 83, 407–70.Google Scholar
Abergel, D., Apalkov, V., Berashevich, J., Ziegler, K., Chakraborty, T., Adv. Phys., 2010, 59, 261482.Google Scholar
Chen, Y., Zhang, B., Liu, G., Zhuang, X., Kang, E., Chem. Soc. Rev., 2012, 41, 4688–707.Google Scholar
Wei, W., Qu, X., Small, 2012, 8, 2138–51.Google Scholar
Sun, Z., James, D., Tour, J., J. Phys. Chem. Lett., 2011, 2, 24252432.Google Scholar
Huang, X., Qi, X., Boey, F., Zhang, H., Chem. Soc. Rev., 2012, 41, 666–86.Google Scholar
Singh, V, Joung, D., Zhai, L., Das, S., Khondaker, S., Seal, S.,Prog. Mater.Sci., 2011, 56, 1178–271.Google Scholar
Huang, X., Yin, Z., Wu, S., Qi, X., He, Q., Zhang, Q., Small, 2011, 7, 1876–902.Google Scholar
Weiss, N., Zhou, H., Liao, L., Liu, Y., Jiang, S., Huang, Y., Adv. Mater., 2012, 24, 5782, 825.Google Scholar
Bonaccorso, F., Sun, Z., Hasan, T., Ferrari, A., Nat. Photon, 2010, 4, 611–22.Google Scholar
Yavari, F, Koratkar, N., J. Phys. Chem. Lett. 2012, 3, 1746–53.Google Scholar
Soldano, C., Mahmood, A., Dujardin, E., Carbon, 2010, 48, 2127–50.CrossRefGoogle Scholar
Georgakilas, V., Otyepka, M., Bourlinos, A., Chandra, V., Kim, N., Kemp, K., Chem Rev, 2012, 112, 6156–214.CrossRefGoogle Scholar
Kuila, T., Bose, S., Mishra, A., Khanra, P., Kim, N., Lee, J., Prog. Mater. Sci. 2012, 57, 10551061 Google Scholar
Shao, Y., Wang, J., Wu, H., Liu, J., Aksay, I., Lin, Y., Electroanalysis 2010, 22, 1027–36.CrossRefGoogle Scholar
Basu, S., Bhattacharyya, P., Sens.Actuat. B., 2012, 173, 121.Google Scholar
Huang, X., Zeng, Z., Fan, Z., Liu, J., Zhang, H., Adv. Mater., 2012, 24, 59796004.CrossRefGoogle Scholar
Xiang, Q., Yu, J., Jaroniec, M., Chem. Soc. Rev., 2012, 41, 782–96.Google Scholar
Zhang, N., Zhang, Y., Xu, Y., Nanoscale, 2012, 4, 5792–813.Google Scholar
Choi, H., Jung, S., Seo, J., Chang, D., Dai, L., Baek, J., Nano Energy, 2012, 1, 534–51.Google Scholar
Machado, B., Serp, P.,Catal. Sci. Technol., 2012, 2, 5475.Google Scholar
Malig, J., Jux, N., Guldi, D., Acc. Chem. Res., 2013, 46, 5364.Google Scholar
Sahoo, N., Pan, Y., Li, L., Chan, S., Adv. Mater., 2012, 24, 4203–10.CrossRefGoogle Scholar
Kim, K., Choi, J., Kim, T., Cho, S., Chung, H., Nature, 2011, 479, 338–44.CrossRefGoogle Scholar
Guermoune, A., Chari, T., Popescu, F., Carbon, 2011, 49, 4204–10.Google Scholar
Sutter, P., Sadowski, J., Sutter, E., Phys. Rev. B, 2009, 80: 4759–68.Google Scholar
Li, X., Cai, W., An, J., Science 2009, 324, 1312–4.Google Scholar
Hasebe, M., Nishizawa, T., Calphad 1981, 5.Google Scholar
Huang, X., Mashimo, T., Journal Of Alloys And Compounds 1999, 288.Google Scholar
Weeber, A., J. Phys. F: Met. Phys. 1987, 17.Google Scholar
He, J., Zhao, J., Ratke, L., Acta Materialia 2006, 54.Google Scholar
Chang, S., Li, C., Huang, Y., Hsu, H., Yeh, J., Lin, S., Sci. Rep. 2014, 4.Google Scholar
Ma, E., Atzmon, M., Pinkerton, F., J. Appl. Phys. 1993, 74.Google Scholar
Xu, J., Herr, U., Klassen, T., Averback, R., J. Appl. Phys. 1996, 79.Google Scholar
Alami, A., Abed, J., Almheiri, M., Alketbi, A. and Aokal, C., Energy Sci. Eng., 2016, 4, 166179.Google Scholar
Alami, A., Zhang, D., Aokal, C., Abed, J., Abu Abdoun, I. and Alawadhi, H., Metall. Mater. Trans. E, 2016, 3, 3745 Google Scholar
Kneller, E., J. Appl. Phys. 1964, 35.Google Scholar
Chien, C., Liou, S., Kofalt, D., Yu, W., Egami, T., Watson, T., McGuire, T., Phys. Rev. B 1986, 33.Google Scholar
Kataoka, N., Sumiyama, K., Nakamura, Y., Transactions Of The Japan Institute Of Metals 1986, 27.Google Scholar
Huang, L., Liu, B., Appl. Phys. Lett. 1990, 57.Google Scholar
Nowakowska-Langier, K., Chodun, R., Nietubyc, R., Minikayev, R., Zdunek, K., Applied Surface Science 2013, 275.Google Scholar
Sommers, C., Uiberacker, C., Weinberg, P., Philosophical Magazine B 1998, 78.Google Scholar
Alami, A., Alketbi, A., Almheiri, M. and Abed, J., Metall. Mater. Trans. E, 2015, 2, 229235 Google Scholar
Alami, A., Alketbi, A., Almheiri, M. and Abed, J., Int. J. Energy Res., 2016, 40, 514521.Google Scholar
León, V., Quintana, M., Herrero, M., Fierro, J., Hoz, A., Prato, M., Vázquez, E., Chemical Communications 2011, 47.Google Scholar
Dash, P., Dash, T., Rout, T., Sahu, A., Biswal, S., Mishra, B., RSC Adv. 2016, 6.Google Scholar
Chen, Y., Zhang, X., Liu, E., He, C., Shi, C., Li, J., Nash, P., Zhao, N., Sci. Rep. 2016, 6.Google Scholar
Fan, X., Chang, D., Chen, X., Baek, J., Dai, L., Current Opinion In Chemical Engineering 2016, 11.Google Scholar
Wall, M. Thermo Scientific Application Note AN51948. 2011.Google Scholar
Cançado, L., Takai, K., Enoki, T., Endo, M., Kim, Y., Mizusaki, H., Jorio, A., Coelho, L., Magalhães-Paniago, R., Pimenta, M., Appl. Phys. Lett. 2006, 88.Google Scholar
Zhao, G., Wen, T., Chen, C., Wang, X., RSC Adv., 2012, 2, 9286–303.Google Scholar
Das, A., Chakraborty, B., Sood, A., Bulletin Of Materials Science 2008, 31.Google Scholar
Li, Q., Zhang, X., Han, W., Lu, Y., Shi, W., Wu, J., Tan, P., Carbon 2015, 85.Google ScholarPubMed
McCartney, J., Ergun, S., Optical Properties Of Coals And Graphite, U.S. Dept Of The Interior, Bureau Of Mines; [For Sale By The Supt. Of Docs., U.S. Govt. Print. Off.], [Washington] 1967.Google Scholar