Published online by Cambridge University Press: 13 May 2020
Recently, an experimental study developed an efficient way to obtain sulfur-doped γ-graphdiyne. This study has shown that this new material could have promising applications in lithium-ion batteries, but the complete understanding of how the sulfur atoms are incorporated into the graphdiyne network is still missing. In this work, we have investigated the sulfur doping process through molecular dynamics and density functional theory simulations. Our results suggest that the doped induced distortions of the γ-graphdiyne pores prevent the incorporation of more than two sulfur atoms. The most common configuration is the incorporation of just one sulfur atom per the graphdiyne pore.