Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-05T06:59:58.741Z Has data issue: false hasContentIssue false

A Novel Electric Power Generation Mechanism from Waste Heat without Temperature Gradient

Published online by Cambridge University Press:  02 May 2016

Keita Yamasoto*
Affiliation:
Kyushu University, 744 Motooka, Fukuoka, 819-0395, JAPAN.
Yuki Osakabe
Affiliation:
Kyushu University, 744 Motooka, Fukuoka, 819-0395, JAPAN.
Sota Adachi
Affiliation:
Kyushu University, 744 Motooka, Fukuoka, 819-0395, JAPAN.
Shinji Munetoh
Affiliation:
Kyushu University, 744 Motooka, Fukuoka, 819-0395, JAPAN.
Osamu Furukimi
Affiliation:
Kyushu University, 744 Motooka, Fukuoka, 819-0395, JAPAN.
*
Get access

Abstract

Seebeck effect is widely used for the energy harvesting from wasted heat. In the Seebeck effect, the electric power can be generated by the temperature difference between both ends of the thermoelectric materials. However, low conversion efficiency is caused by heat flux from hot side to cold side of sample. In this paper, we have proposed a new thermal power generation mechanism with no temperature difference. We investigated the band structure of Ba8AuxSi46-x clathrate single crystal synthesized by Czochralski method. The single crystal has a gradient of the gold contents along the growth direction. According to the results of Seebeck coefficient, the electrical properties of the Ba8AuxSi46-x clathrate dramatically changed depending on the gold contents. In the case of gold content of lower than 5.33, the Ba8AuxSi46-x clathrate showed a n-type semiconductor. In the case of gold content of higher than 5.33, the Ba8AuxSi46-x clathrate showed a p-type semiconductor. The band gap of the n-type and p-type Ba8AuxSi46-x clathrate were wider than the intrinsic semiconductor. We can successfully synthesize a n-p junction single crystal, which obtaining energy band curve generated from the difference of Fermi level between p- and n- type semiconductors. The single crystal was heated under the uniform temperature and able to obtain generated electric voltage of around 0.6 mV at 400°C. These results suggested that the obtained electric voltage can be generated from the separation of hole-electron pair excited by heating at the intrinsic part with a narrow band gap along to the energy band curve formed by p-n junction.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Vining, C.B., Nature 413, 577 (2001)CrossRefGoogle Scholar
Sales, B C, Mandrus, D and Williams, R K 1996 SCIENCE 272 1325 CrossRefGoogle Scholar
Chen, L., Li, J, Sun, F., and Wu, C., J.Appl. Phys. 98, 034507 (2005)CrossRefGoogle Scholar
Munetoh, Shinji, Nature to be submittedGoogle Scholar
Jaussaud, N, Gravereau, P, Pechev, S, COMPTES RENDUS CHIMIE 8, 1, 3946 (2005)CrossRefGoogle Scholar
Candolfi, C, Aydemir, U, J.Appl. Phys. 111, 043706 (2012)CrossRefGoogle Scholar