Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T13:56:10.819Z Has data issue: false hasContentIssue false

Nonlinear Optical Spectroscopy of Two-Dimensional WSe2 Nanoflakes

Published online by Cambridge University Press:  13 February 2019

Sergey Lavrov*
Affiliation:
MIREA - Russian Technological University, 78 Vernadsky Avenue, Moscow119454, Russia
Arseniy Buryakov
Affiliation:
MIREA - Russian Technological University, 78 Vernadsky Avenue, Moscow119454, Russia
Elena Mishina
Affiliation:
MIREA - Russian Technological University, 78 Vernadsky Avenue, Moscow119454, Russia
Kirill Brekhov
Affiliation:
MIREA - Russian Technological University, 78 Vernadsky Avenue, Moscow119454, Russia
Nikita Ilyin
Affiliation:
MIREA - Russian Technological University, 78 Vernadsky Avenue, Moscow119454, Russia
Anastasia Shestakova
Affiliation:
MIREA - Russian Technological University, 78 Vernadsky Avenue, Moscow119454, Russia
Artur Avdizhiyan
Affiliation:
MIREA - Russian Technological University, 78 Vernadsky Avenue, Moscow119454, Russia
*
Get access

Abstract

Here we present the results of the exciton states study in WSe2 and MoS2 monolayers. Thin WSe2 and MoS2 films obtained by CVD technique were studied by optical methods. The films two-dimensionality and homogeneity were confirmed by the methods of atomic force microscopy and luminescence spectroscopy. The second harmonic generation (SHG) spectroscopy technique was used for the exciton states study at room temperature in the pump photon energy range of 0.8-1.05 eV. The sevenfold SHG intensity resonance amplification was found for the 1.62 eV and 1.87 eV SHG photon energy for the WSe2 and MoS2 films, respectively, that corresponds to the exciton transition energy. These resonance peaks belong to optical A excitons with 1s energy level.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Mak, K. F., Lee, C., Hone, J., Shan, J., and Heinz, T. F., Phys. Rev. Lett. 105, 136805 (2010).CrossRefGoogle Scholar
Mak, K. F., He, K., Shan, J., and Heinz, T. F., Nat. Nanotechnol. 7, 494498 (2012).CrossRefGoogle Scholar
Gusakova, J., Wang, X., Shiau, L.L., Krivosheeva, A., Shaposhnikov, V., Borisenko, V., Gusakov, V., Tay, B.K., Phys. status solidi 214, 1700218 (2017).CrossRefGoogle Scholar
Xie, L., Liao, M., Wang, S., Yu, H., Du, L., Tang, J., Zhang, G., Adv. Mater. 29, 1702522 (2017).CrossRefGoogle Scholar
Late, D., Kanawade, R., Kannan, P. K., & Rout, C. S., Sensor Lett. 14, 12491254 (2016).CrossRefGoogle Scholar
Han, K. H., Kim, J. Y., Jo, S. G., Seo, C., Kim, J., & Joo, J., Nanotechnology 28, 435501 (2017).CrossRefGoogle Scholar
Srinivasan, S., and Balasubramanian, G., Langmuir 34, 33263335 (2018).10.1021/acs.langmuir.7b03974CrossRefGoogle Scholar
Lavrov, S. Russ. Technol. J. 4, 1120 (2016).Google Scholar
Chen, X., Park, Y. J., Kang, M., Kang, S.-K., Koo, J., Shinde, S. M., Ahn, J.-H., Nat. Commun. 9, 1690 (2018).CrossRefGoogle Scholar
Wang, G., Gerber, I. C., Bouet, L., Lagarde, D., Balocchi, A., Vidal, M., Urbaszek, B., 2D Mater. 2, 0450005 (2015).Google Scholar
Liu, P., Luo, T., Xing, J., Xu, H., Hao, H., Liu, H., and Dong, J., Nanoscale Res. Lett. 12, 558 (2017).CrossRefGoogle Scholar
Yin, J., Li, J., Chen, H., Wang, J., Yan, P., Liu, M., Liu, W., Lu, W., Xu, Z., Zhang, W., Wang, J., Ruan, S., Opt. Express 25, 30020-30031 (2017).CrossRefGoogle Scholar
Munn, R. W., Shuai, Z., and Bredas, J.-L., J. Chem. Phys. 108, 59755980 (1998).CrossRefGoogle Scholar
Tonndorf, P., Schmidt, R., Böttger, P., Zhang, X., Börner, J., Liebig, A., Bratschitsch, R., Opt. Express 21, 4908-4916 (2013).CrossRefGoogle Scholar
Wang, G., Marie, X., Gerber, I., Amand, T., Lagarde, D., Bouet, L., Urbaszek, B., Phys. Rev. Lett. 114, 097403 (2015).CrossRefGoogle Scholar
Arora, A., Koperski, M., Nogajewski, K., Marcus, J., Faugeras, C., Potemski, M. Nanoscale 7, 10421-10429 (2015).CrossRefGoogle Scholar