Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T07:04:03.139Z Has data issue: false hasContentIssue false

NiFe-LDH@ZnO@NF composite for photo-degradation of Rhodamine B dye

Published online by Cambridge University Press:  10 May 2019

Jun Wu
Affiliation:
School of Physics and Technology, and MOE Key Laboratory of Artificial Micro- and Nano-structures, Wuhan University, Wuhan, 430072, China
Yonghui Gong
Affiliation:
School of Physics and Technology, and MOE Key Laboratory of Artificial Micro- and Nano-structures, Wuhan University, Wuhan, 430072, China
Qiang Fu
Affiliation:
School of Physics and Technology, and MOE Key Laboratory of Artificial Micro- and Nano-structures, Wuhan University, Wuhan, 430072, China
Chunxu Pan*
Affiliation:
School of Physics and Technology, and MOE Key Laboratory of Artificial Micro- and Nano-structures, Wuhan University, Wuhan, 430072, China
*
Get access

Abstract

In this paper, a novel NiFe-LDH@ZnO composite was prepared by using a facile two-step process upon nickel foam (NF) substrate. The morphologies and chemical compositions of the samples were characterized by SEM, EDS, XRD and XPS. Photocatalytic degradation of Rhodamine B dye was tested with the samples NiFe-LDH@ZnO@NF, ZnO@NF and NiFe-LDH under the same conditions. The experimental results revealed that the NiFe-LDH@ZnO@NF composite exhibited excellent photocatalytic performance, i.e., 1.4 and 2.5 times higher than that of pure ZnO and NiFe-LDH, respectively. The reason was that the NiFe-LDH@ZnO@NF composite provided a possibility to effectively inhibit the recombination of the photogenerated electron-hole pairs, and therefore enhanced the photocatalytic efficiency. This composite is expected to have potential applications in wastewater treatment field.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hoffmann, M. R., Martin, S. T., Choi, W. and Bahnemann, D. W., Chem. Rev., 95, 69 (1995).CrossRefGoogle Scholar
Akyol, A., Yatmaz, H. C. and Bayramoglu, M., Appl. Catal. B-Environ., 54, 19 (2004).CrossRefGoogle Scholar
Yang, L. Y., Dong, S. Y., Sun, J. H., Feng, J. L., Wu, Q. H. and Sun, S. P., Hazard, J.. Mater., 179, 438 (2010).Google Scholar
Zhang, Z., Shao, C., Li, X., Zhang, L., Xue, H., Wang, C. and Liu, Y., J. Phys. Chem. C, 114 7920 (2010)CrossRefGoogle Scholar
Zhang, D. and Zeng, F., J. Mater. Sci. 47, 2155 (2012).CrossRefGoogle Scholar
Bhirud, A.P., Sathaye, S.D., Waichal, R.P., Nikam, L.K. and Kale, B.B., Green Chem. 14, 2790 (2012).CrossRefGoogle Scholar
Georgekutty, R., Seery, M. K. and Pillai, S. C., J. Phys. Chem. C, 112, 13563 (2008).CrossRefGoogle Scholar
Wu, J., Luo, C., Li, D., Fu, Q. and Pan, C., J. Mater. Sci., 52, 1285(2017).CrossRefGoogle Scholar
Luo, C., Li, D., Wu, W., Yu, C., Li, W. and Pan, C., Appl. Catal., B, 166–167, 217 ( 2015).CrossRefGoogle Scholar
Li, D., Jiang, X., Zhang, Y., Zhang, B. and Pan, C., J. Mater. Res., 28, 507 (2013).CrossRefGoogle Scholar
Luo, C., Li, D., Wu, W., Zhang, Y. and Pan, C., RSC Adv., 4, 3090 (2014).CrossRefGoogle Scholar
Wang, Z., Luo, C., Zhang, Y., Gong, Y., Wu, J., Fu, Q. and Pan, C., J. Mater. Sci., 53, 15376 (2018).CrossRefGoogle Scholar
Ma, J., Ding, J., Yu, L., Li, L., Kong, Y. and Komarneni, S., Appl. Clay Sci., 109, 76 (2015).CrossRefGoogle Scholar
Varghese, B., Teo, C.H., Zhu, Y., Reddy, M.V., Chowdari, B.V.R., Wee, A.T.S., Tan, V.B.C., Lim, C.T. and Sow, C.H., Adv. Funct. Mater., 17, 1932 (2007).CrossRefGoogle Scholar
Wu, H., Xu, M., Wang, Y. and Zheng, G., Nano Res., 6, 167 (2013).CrossRefGoogle Scholar
Kupfer, B., Majhi, K., Keller, D.A., Bouhadana, Y., Rühle, S., Barad, H.N., Anderson, A.Y. and Zaban, A., Adv. Energy Mater., 5, 1401007 (2015).CrossRefGoogle Scholar
Liu, J., Wang, J., Zhang, B., Ruan, Y., Lv, L., Ji, X., Xu, K., Miao, L. and Jiang, J., ACS Appl. Mater. Interfaces, 9, 15364 (2017).CrossRefGoogle Scholar
Martha, S. and Parida, K. M., Int. J. Hydrogen Energ., 37, 17936 (2012).CrossRefGoogle Scholar
Al-Gaashani, R., Radiman, S., Daud, A. R., Tabet, N. and Al-Douri, Y., Ceram. Int., 39, 2283 (2013).CrossRefGoogle Scholar
Zhu, W., Zhang, T., Zhang, Y., Yue, Z., Li, Y., Wang, R., Ji, Y., Sun, X. and Wang, J., Appl. Catal., B, 244, 844 (2019).CrossRefGoogle Scholar
Yue, L., Li, W., Sun, F., Zhao, L. and Xing, L., carbon, 48, 3079 (2010).CrossRefGoogle Scholar
Mu, J., Shao, C., Guo, Z., Zhang, Z., Zhang, M., Zhang, P., Chen, B. and Liu, Y., ACS Appl. Mater. Interfaces, 3, 590 (2011).CrossRefGoogle Scholar
Fu, H., Pan, C., Yao, W. and Zhu, Y., J. Phys. Chem. B, 109, 22432 (2005).CrossRefGoogle Scholar