Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T13:56:15.956Z Has data issue: false hasContentIssue false

Negative Mechanical Materials and Metamaterials: Giant Out-of-Plane Auxeticity from Multi-Dimensional Wine-Rack-like Motifs

Published online by Cambridge University Press:  24 January 2020

James N. Grima-Cornish*
Affiliation:
Metamaterials Unit, Faculty of Science, University of Malta, Msida MSD 2080, Malta
Joseph N. Grima
Affiliation:
Metamaterials Unit, Faculty of Science, University of Malta, Msida MSD 2080, Malta
Daphne Attard
Affiliation:
Metamaterials Unit, Faculty of Science, University of Malta, Msida MSD 2080, Malta
*
Get access

Abstract

‘Negative mechanical materials / metamaterials’ refer to materials and/or engineered systems that exhibit anomalous macroscopic thermo-mechanical properties that emerge due to the structure of their subunits, rather than the specific chemical composition. As a result of their design/construction, they may exhibit anomalous macroscopic properties such as zero or negative Poisson’s ratios (auxetic), moduli and/or indices. Such zero/negative properties are not normally manifested by their conventional counterparts and may thus potentially be used in applications where typical materials cannot. This work will look into some of the more recent developments made in this field, focusing on how existing materials (e.g. crystals) are providing the blueprint for the design and manufacture of novel ’negative materials’. In particular, this work looks at how wine-rack like crystalline materials which are typically studied for their negative thermal expansion and/or negative compressibility properties can be modified so as to generate negative Poisson’s ratio through a novel mechanism involving forcing elements to move out-of-plane to generate giant out-of-plane auxeticity.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES:

Evans, K.E., Nkansah, M.A., Hutcherson, I.J., and Rogers, S.C., Nature 353, 124 (1991).CrossRefGoogle Scholar
Suga, K., Tanaka, H., Okumura, D., and Shibutani, Y., Smart Mater. Struct. 27, (2018).CrossRefGoogle Scholar
Davini, C., Favata, A., Micheletti, A., and Paroni, R., Smart Mater. Struct. 26, (2017).CrossRefGoogle Scholar
Grima, J.N., Cauchi, R., Gatt, R., and Attard, D., Compos. Struct. 106, (2013).CrossRefGoogle Scholar
Rawal, A., Kumar, V., Saraswat, H., Weerasinghe, D., Wild, K., Hietel, D., and Dauner, M., J. Mater. Sci. 52, 2534 (2017).CrossRefGoogle Scholar
Verma, P., Shofner, M.L., Lin, A., Wagner, K.B., and Griffin, A.C., Phys. Status Solidi B 252, 1455 (2015).CrossRefGoogle Scholar
Attard, D., Calleja, D., and Grima, J.N., Smart Mater. Struct. 27, (2018).CrossRefGoogle Scholar
Lim, T.C., Eur. J. Mech. A/Solids 28, 752 (2009).CrossRefGoogle Scholar
Neelakantan, S., Bosbach, W., Woodhouse, J., and Markaki, A.E., Acta Mater. 66, 326 (2014).CrossRefGoogle Scholar
Grima-Cornish, J.N., Grima, J.N., and Evans, K.E., Phys. Status Solidi B. 254, 1700190 (2017).CrossRefGoogle Scholar
Evans, K.E. and Alderson, K.L., Eng. Sci. Educ. 149 (2000).Google Scholar
Taylor, M., Francesconi, L., Gerendás, M., Shanian, A., Carson, C., and Bertoldi, K., Adv. Mater. 26, 1 (2014).CrossRefGoogle Scholar
Mousanezhad, D., Babaee, S., Ebrahimi, H., Ghosh, R., Hamouda, A.S., Bertoldi, K., and Vaziri, A., Sci. Rep. 5, 18306 (2015).CrossRefGoogle Scholar
Bertoldi, K., Reis, P.M., Willshaw, S., and Mullin, T., Adv. Mater. 22, 361 (2010).CrossRefGoogle Scholar
Lim, T.C., Cheang, P., and Scarpa, F., Phys. Status Solidi B. (2014).Google Scholar
Wojciechowski, K.W., Scarpa, F., Grima, J.N., and Alderson, A., Phys. Status Solidi B. (2019).Google Scholar
Pozniak, A.A. and Wojciechowski, K.W., Phys. Status Solidi B. 251, 367 (2014).CrossRefGoogle Scholar
Bhullar, S.K., Wegner, J.L., and Mioduchowski, A., J. Eng. Technol. Res. (2010).Google Scholar
Ha, C.S., Plesha, M.E., and Lakes, R.S., Smart Mater. Struct. 25, 054005 (2016).CrossRefGoogle Scholar
Verma, P., Shofner, M.L., and Griffin, A.C., Phys. Status Solidi B. 251, 289 (2014).CrossRefGoogle Scholar
Dudek, K.K., Wolak, W., Dudek, M.R., Caruana-Gauci, R., Gatt, R., Wojciechowski, K.W., and Grima, J.N., Phys. Status Solidi - Rapid Res. Lett. 11, 1700122 (2017).CrossRefGoogle Scholar
Novak, N., Vesenjak, M., Kennedy, G., Thadhani, N., and Ren, Z., Phys. Status Solidi B. 1900099 (2019).CrossRefGoogle Scholar
Grima, J.N., Grech, M.C., Grima-Cornish, J.N., Gatt, R., and Attard, D., Ann. Phys. 530, 1700330 (2018).CrossRefGoogle Scholar
Pozniak, A.A., Kaminski, H., Kedziora, P., Maruszewski, B., Strek, T., and Wojciechowski, K.W., Rev. Adv. Mater. Sci. 23, 169 (2010).Google Scholar
Caruana-Gauci, R., Degabriele, E.P., Attard, D., and Grima, J.N., J. Mater. Sci. 53, 5079 (2018).CrossRefGoogle Scholar
Degabriele, E.P., Attard, D., Grima-Cornish, J.N., Caruana-Gauci, R., Gatt, R., Evans, K.E., and Grima, J.N., Phys. Status Solidi B. 256, 1800572 (2019).CrossRefGoogle Scholar
Grima, J.N., Attard, D., Caruana-Gauci, R., and Gatt, R., Scr. Mater. 65, 565 (2011).CrossRefGoogle Scholar
Yan, Y., O’Connor, A.E., Kanthasamy, G., Atkinson, G., Allan, D.R., Blake, A.J., and Schröder, M., J. Am. Chem. Soc. 133, jacs. 7b11747 (2018).Google Scholar
Qiao, Y., Wang, K., Yuan, H., Yang, K., and Zou, B., J. Phys. Chem. Lett. 6, 2755 (2015).CrossRefGoogle Scholar
Coudert, F.-X., Phys. Chem. Chem. Phys. 15, 16012 (2013).CrossRefGoogle Scholar
Grima, J.N., Bajada, M., Scerri, S., Attard, D., Dudek, K.K., and Gatt, R., Proc. R. Soc. A Math. Phys. Eng. Sci. 471, (2015).CrossRefGoogle Scholar
Cai, W. and Katrusiak, A., Nat. Commun. 5, 1 (2014).Google Scholar
Baughman, R.H., Stafström, S., Cui, C., and Dantas, S.O., Science. 279, 1522 (1998).CrossRefGoogle Scholar
Cairns, A.B. and Goodwin, A.L., Phys. Chem. Chem. Phys. 17, 20449 (2015).CrossRefGoogle Scholar
Li, W., Probert, M.R., Kosa, M., Bennett, T.D., Thirumurugan, A., Burwood, R.P., Parinello, M., Howard, J.A.K., and Cheetham, A.K., J. Am. Chem. Soc. 134, 11940 (2012).CrossRefGoogle Scholar
Grima-Cornish, J.N., IUCr Newsletter 27 (2019).Google Scholar
Mason, W.P., New York, Van Nostrand (1950).Google Scholar
Evans, K.E., Alderson, A., and Christian, F.R., J. Chem. Soc. Faraday Trans. 91, 2671 (1995).CrossRefGoogle Scholar