Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-25T19:26:22.076Z Has data issue: false hasContentIssue false

Nanocellulose Extracted from Defoliation of Ginkgo Leaves

Published online by Cambridge University Press:  05 February 2018

Hongyang Ma*
Affiliation:
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing100029, China Department of Chemistry, Stony Brook University, Stony Brook, NY11794-3400, USA
Benjamin S. Hsiao*
Affiliation:
Department of Chemistry, Stony Brook University, Stony Brook, NY11794-3400, USA
*
*Corresponding authors Phone: (631) 229-6899 (H.M.); (631) 632-7793 (B.S.H). Fax: (631) 632-6518 E-mails: [email protected] (H.M.); [email protected] (B.S.H.)
*Corresponding authors Phone: (631) 229-6899 (H.M.); (631) 632-7793 (B.S.H). Fax: (631) 632-6518 E-mails: [email protected] (H.M.); [email protected] (B.S.H.)
Get access

Abstract

Nanocelluloses with fiber diameter of ∼ 5 nm were extracted facilely from seasonal defoliation of ginkgo leaves by combined TEMPO-mediated oxidation/mechanical treatment and were used as adsorbents to remove charged contaminants from water. The chemical composition of nanocellulose was determined by solid-state 13C NMR and elemental analysis, whereas the morphology was characterized by TEM and POM techniques. The adsorption capacity of ginkgo nanocellulose against cationic dye molecules and heavy metal ions (e.g., cupric ions) were investigated in a static adsorption study. The results verified that nanocelluloses extracted from biomass waste, such as ginkgo leaves, could be used as efficient adsorption media for remediation of contaminated water.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Sarkar, N., Ghosh, S. K., Bannerjee, S., Aikat, K., Bioethanol production from agriculture wastes:An overview, Renewable Energy, 2012, 37, 1927.CrossRefGoogle Scholar
Amiralian, N., Annamalai, P. K., Memmott, P., Martin, D. J., Cellulose, 2015, 22, 24832498.CrossRefGoogle Scholar
Chen, B., Zhou, D., Zhu, L., Transitional adsorption and partition of non-polar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperature, Environmental Science & Technology, 2008, 42, 51375143.CrossRefGoogle Scholar
Nanda, S., Isen, J., Dalai, A. K., Kozinski, J. A., EnergyConversionand Management, 2016, 110, 296306.CrossRefGoogle Scholar
Kamoga, O. L. M., Kirabira, J. B., Byaruhanga, J. K., Characterisation of Ugandan selected grasses and tree leaves for pulp extraction for paper industry, International Journal of Scientific & Technology Research, 2013, 2, 146154.Google Scholar
Moon, R. J., Martini, A., Nairn, J., Simonsen, J., Yuongblood, J., Cellulose nanomaterials review: structure, properties, and nanocomposites, Chemical Society Reviews, 2011, 40, 39413994.CrossRefGoogle ScholarPubMed
Lin, N., Huang, J., Dufresne, A., Preparation, properties, and applications polysaccharide nanocrystals in advanced functional nanomaterials: a review, Nanoscale, 2012, 4, 32743294.CrossRefGoogle ScholarPubMed
Habibi, Y., Key advances in the chemical modification of nanocelluloses, Chemical Society Reviews, 2014, 43, 15191542.CrossRefGoogle ScholarPubMed
Isogai, A., Saito, T., Fukuzumi, H., TEMPO-oxidized cellulose nanofibers, Nanoscale, 2011, 3, 7185.CrossRefGoogle ScholarPubMed
Beck-Candanedo, S., Roman, M., Gray, D. G., Effect of Reaction Conditions on the proeprties and behavior of wood cellulose nanocrystal suspensions, Biomacromolecules, 2005, 6, 10481054.CrossRefGoogle Scholar
van den Berg, O., Capadona, J. R., Weder, C., Preparation of homogeneous dispersions of tunicate cellulose whiskers in organic solvents, Biomacromolecules, 2007, 8, 13531357.CrossRefGoogle ScholarPubMed
Liimatainen, H., Visanko, M., Sirvio, J. A., Hormi, O. E. O., Niinimaki, J., Enhancement of the nanofibrillation of wood cellulose through sequential periodate-chlorite oxidation, Biomacromolecules, 2012, 13, 15921597.CrossRefGoogle ScholarPubMed
Sharma, P. R., Joshi, R., Sharma, S. K., Hsiao, B. S., A simple approach to prepare carboxycellulose nanofibers from untreated biomass, Biomacromolecules, 2017, 18, 23332342.CrossRefGoogle Scholar
Markstedt, K., Mantas, A., Tournier, I., Avila, H. M., Hagg, D., Gatenholm, P., 3D bioprinting human Chondrocytes with nanocelulose-alginate bioink for cartilage tissue engineering applications, Biomacromolecules, 2015, 16, 14891496.CrossRefGoogle ScholarPubMed
Favier, V., Chanzy, H., Cavaille, J. Y., Polymernanocompositesreinforced by cellulose whiskers, Macromolecules, 1995, 28, 63656367.CrossRefGoogle Scholar
Ma, H. Y., Burger, C., Hsiao, B. S., Chu, B., Ultrafine polysaccharide nanofibrous membranes for water purification, Biomacromolecules, 2011, 12, 970976CrossRefGoogle ScholarPubMed
Ma, H. Y., Burger, C., Hsiao, B. S., Chu, B., Nanofibrous microfiltration membrane based on cellulose nanowhiskers, Biomacromolecules, 2012, 13, 180186.CrossRefGoogle ScholarPubMed
Ma, H. Y., Burger, C., Hsiao, B. S., Chu, B., Ultra-fine cellulose nanofibers : new nanoscale materials for water purification, Journal of Materials Chemistry, 2011, 21, 75077510.CrossRefGoogle Scholar
Kuramae, R., Saito, T., Isogai, A., TEMPO-oxidized cellulose nanofibrils prepared from various plant holocelluloses, Reactive & Functional Polymers, 2014, 85, 126133.CrossRefGoogle Scholar
Saito, T., Isogai, A., TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions, Biomacromolecules, 2004, 5, 19831989.CrossRefGoogle Scholar
Thomaides, J. S., Cimecioglu, A. L., US6586588 B1Google Scholar
Chen, J., Sun, S., Q Zhou, , Direct observation of bulk and surface chemical morphologies of Ginkgo biloba leaves by Fourier transform mid- and near-infrared microspectroscopic imaging, Anal. Bioanal. Chem., 2013, 405, 93859400.CrossRefGoogle ScholarPubMed
Ma, H. Y., Hsiao, B. S., Chu, B., Electrospunnanofibrous membrane for heavy metal ion adsorption, Current Organic Chemistry, 2013, 17, 13611370.CrossRefGoogle Scholar
Kampalanonwat, P., Supaphol, P., Preparation of hydrolyzedelectrospunpolyacrylonitrilefiber mats as chelating substrates: A case study on copper(II) ions. Ind. Eng. Chem. Res., 2011, 50, 1191211921.CrossRefGoogle Scholar
Min, M., Shen, L., Hong, G., Zhu, M., Zhang, Y., Wang, X., Chen, Y., Hsiao, B. S., Micro-nano structure poly(ether sulfones)/poly(ethyleneimine) nanofibrous affinity membranes for adsorption of anionic dyes and heavy metal ions in aqueous solution. Chem. Eng. J., 2012, 197, 88100.CrossRefGoogle Scholar
Feng, Q., Wang, X., Wei, A., Wei, Q., Hou, D., Luo, W., Liu, X., Wang, Z., Surface modified polyacrylonitrile nanofibers and application for metal ions chelation. Fibers and Polymers, 2011, 12, 10251029.CrossRefGoogle Scholar
Haider, S., Park, S. Y., Preparation of the electrospun chitosan nanofibers and their applications to the adsorption of Cu(II) and Pb(II) ions from an aqueous solution. J. Membr. Sci., 2009, 328, 9096.CrossRefGoogle Scholar
Wu, S., Li, F., Wu, Y., Xu, R., Li, G., Preparation of novel poly(vinyl alcohol)/SiO2 composite nanofiber membranes with mesostructure and their application for removal of Cu2+ from waste water. Chem. Commun., 2010, 46, 16941696.CrossRefGoogle Scholar