Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T05:17:39.988Z Has data issue: false hasContentIssue false

MXene Electrode Materials for Electrochemical Energy Storage: First-Principles and Grand Canonical Monte Carlo Simulations

Published online by Cambridge University Press:  01 July 2019

Yasuaki Okada*
Affiliation:
Murata Manufacturing Co., Ltd., 1-10-1 Higashikotari, Nagaokakyo-shi, Kyoto617-8555, Japan
Nathan Keilbart
Affiliation:
Department of Materials Science and Engineering, Materials Research Institute, and Penn State Institutes of Energy and the Environment, The Pennsylvania State University, University Park, Pennsylvania16802, USA
James M. Goff
Affiliation:
Department of Materials Science and Engineering, Materials Research Institute, and Penn State Institutes of Energy and the Environment, The Pennsylvania State University, University Park, Pennsylvania16802, USA
Shin’ichi Higai
Affiliation:
Murata Manufacturing Co., Ltd., 1-10-1 Higashikotari, Nagaokakyo-shi, Kyoto617-8555, Japan
Kosuke Shiratsuyu
Affiliation:
Murata Manufacturing Co., Ltd., 1-10-1 Higashikotari, Nagaokakyo-shi, Kyoto617-8555, Japan
Ismaila Dabo
Affiliation:
Department of Materials Science and Engineering, Materials Research Institute, and Penn State Institutes of Energy and the Environment, The Pennsylvania State University, University Park, Pennsylvania16802, USA
*
Get access

Abstract

MXenes are a novel class of two dimensional materials, discovered by Barsoum and Gogotsi [M. Naguib, J. Come, B. Dyatkin, V. Presser, P. Taberna, P. Simon, M. W. Barsoum, and Y. Gogotsi, Electrochemistry Communications 16, 61-64 (2012); B. Anasori, M. R. Lukatskaya, and Y. Gogotsi, Nature Reviews Materials vol. 2, 16098 (2017)]. Their large specific surface area and the tunability of their physicochemical properties as a function of the transition metal and surface terminal group make them a unique design platform for various applications, a primary example of which is pseudocapacitive energy storage. However, there is still incomplete understanding of how the transition metal chemistry and stoichiometry, and the surface termination affect charge storage mechanisms in MXene. In this study, we have performed systematic first-principles calculations for bulk MXene and found that the atomic charge of the metal cations, which is related to their valence, decreases across the d-electron metal series. Electronic-structure indicators of performance are examined to understand the energy storage behavior, whereby charges are stored between the terminal groups and adsorbing cations. Importantly, we found that the differential Bader charges show good agreement with theoretical capacitances and are useful in predicting charge storage trends in MXene-based pseudocapacitors. Furthermore, we have performed first-principles and grand canonical Monte Carlo calculations for the slab systems, finding that the solvent plays a critical role in enhancing the pseudocapacitive response.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

Naguib, M., Come, J., Dyatkin, B., Presser, V., Taberna, P., Simon, P., Barsoum, M. W., and Gogotsi, Y., Electrochemistry Communications 16, 61-64 (2012).CrossRefGoogle Scholar
Anasori, B., Lukatskaya, M. R., and Gogotsi, Y., Nature Reviews Materials vol. 2, 16098 (2017).CrossRefGoogle Scholar
Naguib, M., Mochalin, V. N., Barsoum, M. W., and Gogotsi, Y., Adv. Mater. 26, 992-1005 (2014).CrossRefGoogle Scholar
Anasori, B., Xie, Y., Beidaghi, M., Lu, J., Hosler, B. C., Hultman, L., Kent, P. R. C., Gogotsi, Y., and Barsoum, M.W., ACS Nano 9 (10), pp 9507-9516 (2015).CrossRefGoogle Scholar
Zhan, C., Naguib, M., Lukatskaya, M., Kent, P. R. C., Gogotsi, Y., and Jiang, D., J. Phys. Chem. Lett. 9, 1223-1228 (2018).CrossRefGoogle Scholar
Xie, Y., Dall’Agnese, Y., Naguib, M., Gogotsi, Y., Barsoum, M. W., Zhuang, H. L., and Kent, P. R. C., ACS Nano 8 (9), 9606-9615 (2014).CrossRefGoogle Scholar
Kresse, G. and Furthmüller, J., Phys. Rev. B 54 , 11169 (1996).CrossRefGoogle Scholar
Tang, W., Sanville, E., and Henkelman, G., J. Phys.: Condens. Matter 21, 084204 (2009).Google Scholar
Momma, K. and Izumi, F., “VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data,” J. Appl. Crystallogr. 44, 1272-1276 (2011).CrossRefGoogle Scholar
Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, I., Dal Corso, A., Fabris, S., Fratesi, G., de Gironcoli, S., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A. P., Smogunov, A., Umari, P., and Wentzcovitch, R. M., J.Phys.:Condens.Matter 21, 395502 (2009).Google Scholar
Andreussi, O., Dabo, I., and Marzari, N., J. Chem. Phys. 136, 064102 (2012).CrossRefGoogle Scholar
Keilbart, N., Okada, Y., Feehan, A., Higai, S., and Dabo, I., Phys. Rev. B 95, 115423 (2017).CrossRefGoogle Scholar
Khazaei, M., Arai, M., Sasaki, T., Chung, C.-Y., Venkataramanan, N. S., Estili, M., Sakka, Y., and Kawazoe, Y., Adv. Funct. Mater. 23, 2185-2192 (2013).CrossRefGoogle Scholar
Zha, X., Huang, Q., He, J., He, H., Zhai, J., Francisco, J. S., and Du, S., Scientific Reports 6, 27971 (2016).CrossRefGoogle Scholar
Wang, X., Mathis, T. S., Li, K., Lin, Z., Vlcek, L., ToritaT., ... T., ... & Tyagi, M. 1. Nature Energy (2019).Google Scholar