Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-19T11:34:02.806Z Has data issue: false hasContentIssue false

Monitor the Growth and Oxidation of Cu-nanoparticles in PEG after Sputtering

Published online by Cambridge University Press:  24 January 2019

Yuen-ting Rachel Chau
Affiliation:
Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido060-8628, Japan
Lianlian Deng
Affiliation:
Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido060-8628, Japan
Mai Thanh Nguyen
Affiliation:
Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido060-8628, Japan
Tetsu Yonezawa*
Affiliation:
Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido060-8628, Japan
*
Get access

Abstract

Metallic Copper nanoparticles (Cu NPs) were obtained via sputtering of Cu target onto liquid polymer, i.e., poly(ethylene glycol), PEG, under vacuum condition. The Cu NPs growth significantly right after the sputtering deposition from 3.1 nm to 4.1 nm in 4 hours as monitored by TEM. There was negligible growth of NPs for longer time and completely PEG acts as the coating material of Cu NPs so no agglomeration was observed for 1 week. The challenge of characterization of Cu NPs was also discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gawande, M. B., Goswami, A., Felpin, F., Asefa, T., Huang, X., Silva, R., Zou, X., Zboril, R., Varma, R. S., Chem. Rev. 116, 3722 (2016)CrossRefGoogle Scholar
Jang, S., Seo, Y., Choi, J., Kim, T., Cho, J., Kim, S., Kim, D., Scr. Mater. 62, 258 (2010)CrossRefGoogle Scholar
Eastman, J.A., Choi, S. U. S., Li, S., Yu, W., Thompson, L. J., Appl. Phys. Lett. 78, 718 (2001)CrossRefGoogle Scholar
Ren, G., Hu, D., Cheng, E. W.C., Vargas-Reus, M. A., Reip, P., Allaker, R.O., Int. J. Antimicrob. Agents. 33, 587 (2009)CrossRefGoogle Scholar
Anyaogu, K.C., Fedorov, A. V., Neckers, D.C., Langmuir. 24, 4340 (2008)CrossRefGoogle Scholar
Hatakeyama, Y., Morita, T., Takahashi, S., Onishi, K., Nishiwaka, K., J. Phys. Chem. C. 115, 3279 (2011)CrossRefGoogle Scholar
Ishida, Y., Nakabayashi, R., Matsubara, M., Yonezawa, T., New J. Chem. 39, 4227 (2015)CrossRefGoogle Scholar
Sumi, T., Motono, S., Ishida, Y., Shirahata, N., Yonezawa, T., Langmuir. 31, 4323-4329 (2015)CrossRefGoogle Scholar
Nguyen, M.T., Yonezawa, T., Wang, Y., Tokunaga, T., Mater. Lett. 171, 75 (2016)CrossRefGoogle Scholar
Corpuz, R.D., Ishida, Y., Nguyen, M.T., Yonezawa, T., Langmuir. 33, 9144-9150 (2017)CrossRefGoogle Scholar
Nguyen, M.T., Zhang, H., Deng, L., Tokunaga, T., Yonezawa, T., Langmuir. 33 (43), 12389 (2017)CrossRefGoogle Scholar
Nguyen, M.T., Yonezawa, T., Sci. Tech. Adv. Mater. in press (DOI: 10.1080/ 14686996.2018.1542926.Google Scholar
Ishida, Y., Corpuz, R.D., Yonezawa, T., Acc. Chem. Res. 50, 2986 (2017)CrossRefGoogle Scholar
Aschenbrenner, O., Supasitmongkol, S., Taylor, M., Styring, P., Green Chem. 11, 1217 (2009)CrossRefGoogle Scholar
Deng, L., Nguyen, M.T., Yonezawa, T., Langmuir. 34, 2876 (2018)CrossRefGoogle Scholar
König, D., Richter, K., Siegel, A., Mudring, A., Ludwig, A., Adv. Funct. Mater. 24, 2049 (2014)CrossRefGoogle Scholar
Nakagawa, K., Narushima, T., Udagawa, S., Yonezawa, T., J. Phys. Conf. Ser. 417, 012038 (2013)CrossRefGoogle Scholar
Porta, M., Nguyen, M.T., Ishida, Y., Yonezawa, T., RSC Adv. 6, 105030 (2016)CrossRefGoogle Scholar