Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-24T02:44:26.316Z Has data issue: false hasContentIssue false

Microstructure of Aged 238Pu-doped La-monazite Ceramic and Peculiarities of its X-ray Emission Spectra

Published online by Cambridge University Press:  27 January 2020

Andrey A. Shiryaev*
Affiliation:
Institute of physical chemistry and electrochemistry RAS, Leninsky pr. 31, korp. 4, 119071, Moscow, Russia ([email protected]) Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, 1 bld.3, Moscow, 119991, Russia
Boris E. Burakov
Affiliation:
V. G. Khlopin Radium institute, 2-nd Murinski ave. 28, Sankt-Petersburg, 194021, Russia.
Vasily O. Yapaskurt
Affiliation:
Department of Geology, Lomonosov Moscow State University, Moscow, 119991, Russia
Alexander V. Egorov
Affiliation:
Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, 1 bld.3, Moscow, 119991, Russia
Irina E. Vlasova
Affiliation:
Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, 1 bld.3, Moscow, 119991, Russia
*
Get access

Abstract

New data on microstructure of 16 years old (La, Pu)PO4 monazite ceramics doped with 8.1 wt% of 238Pu are presented. It is shown that the sample consists from at least two phases differing in La/Pu ratio and small precipitates of Pu-phosphate. Possible mechanisms of the compositional heterogeneity are discussed. Formation of Pu-containing rhabdophane after sample storage in air is observed. This phenomenon together with gradual mechanical destruction of the ceramic pellet formation of submicron particles will likely increase rate of radionuclides loss from the monazite-based waste form. X-ray emission lines produced by recoil uranium ions from Pu decay are analysed. It is suggested that careful examination of their relative intensities may provide important information about behaviour of "hot" recoils in nuclear waste forms.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boatner, L.A., Beall, G.W., Abraham, M.M., Finch, C.B., Huray, P.C., Rappaz, M., Monazite and other lanthanide orthophosphates as alternative actinide waste forms, in Scientific Basis for Nuclear Waste Management, Advances in Nuclear Science & Technology, edited by Northrup, C.J.M (Springer, Boston, MA, 1980) V. 2., pp. 289-296.10.1007/978-1-4684-3839-0_35CrossRefGoogle Scholar
Dacheux, N., Clavier, N., and Podor, R., Monazite as a promising long-term radioactive waste matrix: Benefits of high-structural flexibility and chemical durability, Amer. Miner., 98, 833847, (2013).CrossRefGoogle Scholar
Burakov, B.E., Yagovkina, M.A., Garbuzov, V.M., Kitsay, A.A. and Zirlin, V.A., 2004, Self-Irradiation of Monazite Ceramics: Contrasting Behavior of PuPO4 and (La,Pu)PO4 Doped with Pu-238, in Scientific Basis for Nuclear Waste Management XXVIII, edited by Hanchar, J.M., Stroes-Gascoyne, S., Browning, L., (Mater. Res. Soc. Symp. Proc., 824, 2004), pp. 219-224.Google Scholar
Zubekhina, B.Yu., Burakov, B.E., Leaching of Plutonium from “Old” Samples of Single Phase Ceramics Based on Zr0.79Gd0.14Pu0.04O1.93 and La0.9Pu0.1PO4 Doped with 238Pu, MRS Advances, 1(63-64), 4249-4253 (2016).CrossRefGoogle Scholar
Shiryaev, A.A., Nickolsky, M.S., Averin, A.A., Grigoriev, M.S., Zubavichus, Y.V., Vlasova, I.E., Petrov, V.G., Burakov, B.E., Structural peculiarities of aged 238Pu-doped monazite, MRS Advances, 1(63-64), 4275-4281 (2016) DOI: 10.1557/adv.2017.220.10.1557/adv.2017.220CrossRefGoogle Scholar
Neumeier, S., Arinicheva, Y., Clavier, N., Podor, R., Bukaemskiy, A., Modolo, G., Dacheux, N., Bosbach, D.The effect of the synthesis route of monazite precursors on the microstructure of sintered pellets, Progr. Nucl. Energy, 92, 298-305 (2016).CrossRefGoogle Scholar
Arinicheva, Y., Popa, K., Scheinost, A.C., Rossberg, A., Dieste-Blanco, O., Raison, P., Cambriani, A., Somers, J., Bosbach, D., Neumeier, S., Structural investigations of (La,Pu)PO4 monazite solid solutions: XRD and XAFS study, J. Nucl. Mat., 493, 404-411 (2017).CrossRefGoogle Scholar
Shiryaev, A.A., Burakov, B.E., Nickolsky, M.S., Yapaskurt, V.O., Pavlushin, A.D., Grigoriev, M.S., Vlasova, I.E., Surface features on aged 238Pu-doped Eu-monazite, Radiochimica Acta, doi: 10.1515/ract-2019-3185 (2019).CrossRefGoogle Scholar
Wiss, T., Thiele, H., Cremer, B., and Ray, I., Internal Conversion in Energy Dispersive X-ray Analysis of Actinide-Containing Materials, Microsc. Microanal. 13, 196203 (2007).10.1017/S1431927607070365CrossRefGoogle ScholarPubMed
Johnston, P.N. and Burns, P.A., Absolute L X-ray intensities in the decays of 230Th, 234U, 238Pu and 244Cm, Nucl. Instr. Meth., A361, 229-239 (1995).CrossRefGoogle Scholar
Maeda, M., Maehata, K., Iyomoto, N., Ishibashi, K., Takasaki, K., Nakamura, K., Aoki, K., Mitsuda, K., Tanaka, K., Yamanaka, Y., Peak identification of L X-ray spectra of elemental Np and U, J. Nucl. Sci. & Tech., 52(4), 509-513 (2015).Google Scholar
Vasilik, D.G., Martin, R.W., ULα,β,γ X-ray intensities from the alpha decay of 238Pu, Nucl. Instrum. Meth., 135, 405-406 (1975).CrossRefGoogle Scholar
Bemis, C.E. Jr., Tubbs, L., Absolute L-series X-ray and low-energy gamma-ray yields for most transuranium nuclides, in: Chem. Div. Ann. Progr. Rep. ORNL-5297, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA (1977), p.93-94.Google Scholar
Bortels, G., Denecke, B., Vaninbroukx, R., Alpha-particle and photon emission probabilities in the 238Pu-234U decay, Nucl. Instrum. Meth., 223, 329-335 (1984).CrossRefGoogle Scholar
Afrosimov, V.V., Gordeev, Yu.S., Panov, M.N., and Fedorenko, N.V., Elementary processes of charge state changes at atomic collisions, Zh. Tekhn. Fiz. 34, 1637-1644 (1964) [translation: Sov. Phys. - Tech. Phys. 9, 1265 (1965)] and references therein.Google Scholar
Fano, U. and Lichten, W., Interpretation of Ar –Ar+ collisions at 50 keV, Phys. Rev. Lett., 14 ,627-629 (1965).10.1103/PhysRevLett.14.627CrossRefGoogle Scholar
Amekura, H., Voitsenya, V., Lay, T.T., Takeda, Y. and Kishimoto, N., X-Ray Emission Induced by 60 keV High-Flux Copper Negative-Ion Implantation, Jpn. J. Appl. Phys., 40, 1094-1096 (2001).CrossRefGoogle Scholar
Batrakov, Y.F., Bogdanov, R.V., Puchkova, E.V., Sergeev, A.S., Identification of the uranium state in minerals by the chemical shift of hard X-ray lines, Radiochemistry, 42(2), 112-118 (2000).Google Scholar
Puchkova, E.V., Bogdanov, R.V., and Gieré, R., Redox states of uranium in samples of microlite and monazite, Amer. Miner., 101, 18841891 (2016).10.2138/am-2016-5475CrossRefGoogle Scholar
Porikli, S.Influence of the chemical environment changes on the line shape and intensity ratio values for La, Ce and Pr L lines spectra, Chem. Phys. Lett., 508, 165170 (2011).CrossRefGoogle Scholar
Cano, G.L., Dressel, R.W., Energy Loss and Resultant Charge of Recoil Particles from Alpha Disintegrations in Surface Deposits of 210Po and 241Am, Phys. Rev., 139(6), A1883-A1892 (1965).CrossRefGoogle Scholar
Beyer, H., Mann, R., Folkmann, F., H Mokler, P., X-ray and Auger transitions in highly ionised argon recoil ions, J. Phys. B: At. Mol. Phys., 15 3853-3869 (1982).CrossRefGoogle Scholar
Ji, Y., Kowalski, P.M., Kegler, P., Huittinen, N., Marks, N.A., Vinograd, V.L., Arinicheva, Y., Neumeier, S., Bosbach, D., Rare-Earth Orthophosphates From Atomistic Simulations, Front. Chem., 7, Article 197.Google Scholar
Lu, F., Shen, Y., Sun, X., Dong, Z., Ewing, R.C., Lian, J., Size dependence of radiation-induced amorphization and recrystallization of synthetic nanostructured CePO4 monazite, Acta Mater., 61 ,29842992 (2013).10.1016/j.actamat.2013.01.058CrossRefGoogle Scholar
Shiryaev, A.A., Hinks, J.A., Marks, N.A., Greaves, G., Valencia, F.J., Donnelly, S.E., González, R.I., Kiwi, M., Trigub, A.L., Bringa, E.M., Fogg, J.L., Vlasov, I.I., Ion implantation in nanodiamonds: Size effect and energy dependence, Sci. Rep., 8, 210 (2018).CrossRefGoogle ScholarPubMed
Ziegler, J.F., Biersack, J., Littmark, U., The Stopping and Range of Ions in Matter, Pergamon Press, 1985CrossRefGoogle Scholar