Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T11:47:02.241Z Has data issue: false hasContentIssue false

Mechanical Properties of Nanocarbon Hybrid Films via Indentation Simulation

Published online by Cambridge University Press:  14 March 2016

T. Onodera
Affiliation:
Division of Science Education, Tokyo Gakugei University, 4-1-1 Nukuikitamachi, Koganei, Tokyo 184-8501, Japan
K. Shintani*
Affiliation:
Department of Mechanical Engineering and Intelligent Systems, University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
*
Get access

Abstract

The mechanical properties of nanocarbon hybrid films are addressed by means of indentation simulation based on molecular-dynamics. In these films, single-walled carbon nanotubes (SWCNTs) are intercalated parallel to each other between graphene sheets; the SWCNT axes are also parallel to the planes of the sheets. Thus the simulation model is quasi-two-dimensional. The load-deflection curve depends on both the number of the layers and the diameter of SWCNTs. In the range of small forces, the simulation data can be interpolated by a cubic function of the deflection, while in the range of large forces, the data can be expressed in terms of a linear function of the deflection. It is revealed that such a transition corresponds to the structural change of the hybrid film.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Lv, R., Cruz-Silva, E., and Terrones, M., ACS Nano 8, 4061 (2014).CrossRefGoogle Scholar
Tristán-López, F., Morelos-Gómez, A., Vega-Diaz, S. M., García-Betancourt, M. L., Perea- López, N., Elías, A. L., Muramatsu, H., Cruz-Silva, R., Tsuruoka, S., Kim, Y. A., Hayashi, T., Kaneko, K., Endo, M., and Terrones, M., ACS Nano 7, 10788 (2013).CrossRefGoogle Scholar
LAMMPS Molecular Dynamics Simulator. Available at: http://lammps.sandia.gov/ (accessed 18/11/2015).Google Scholar
Stuart, S. J., Tutein, A. B., and Harrison, J. A., J. Chem. Phys. 112, 6472 (2000).CrossRefGoogle Scholar
Brenner, D. W, Shenderova, O. A., Harrison, J. A., Stuart, S. J., Ni, B., and Sinnott, S. B., J. Phys.: Condens. Matter 14, 783 (2002).Google Scholar
Furuhashi, F. and Shintani, K., AIP Advances 3, 092103 (2013).CrossRefGoogle Scholar
Sakane, Y., Mouri, K., and Shintani, K., AIP Advances 5, 117113 (2015).CrossRefGoogle Scholar
Lee, C., Wei, X., Kysar, J. W., and Hone, J., Science 321, 385 (2008).CrossRefGoogle Scholar
Kim, S. Y., Cho, S.-Y., Kang, J. W., and Kwon, O. K., Physica E 54, 118 (2013).Google Scholar