Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T08:07:00.088Z Has data issue: false hasContentIssue false

Mechanical Properties and Microstructural Behavior of a Metal Matrix Composite Processed by Severe Plastic Deformation Techniques

Published online by Cambridge University Press:  10 December 2015

Shima Sabbaghianrad*
Affiliation:
Departments of Aerospace and Mechanical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089-1453, U.S.A
Terence G. Langdon
Affiliation:
Departments of Aerospace and Mechanical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089-1453, U.S.A Materials Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ, U.K.
*
Get access

Abstract

A severe plastic deformation (SPD) technique was applied to an Al-7075 alloy reinforced with 10 vol.% Al2O3. This processing method of high-pressure torsion (HPT) was performed at room temperature under a pressure of 6.0 GPa through a total number of up to 20 turns. The metal matrix composite (MMC) showed a significant grain refinement from an initial average grain size of ∼8 μm to ∼300 nm after processing by HPT through 20 turns which led to an increase in the average values of Vickers microhardness at room temperature.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Valiev, R.Z., Islamgaliev, R.K., Alexandrov, I.V., Prog. Mater. Sci. 45, 103 (2000).CrossRefGoogle Scholar
Valiev, R.Z. and Langdon, T.G., Prog. Mater. Sci. 51, 881 (2006).Google Scholar
Zhilyaev, A.P. and Langdon, T.G., Prog. Mater. Sci. 53, 893 (2008).Google Scholar
Bridgman, P.W., J. Appl. Phys. 14, 273 (1943).CrossRefGoogle Scholar
Zhilyaev, A.P., Kim, B.K., Nurislamova, G.V., Baró, M.D., Szpunar, J.A., Langdon, T.G., Scripta Mater. 46, 575 (2002).CrossRefGoogle Scholar
Zhilyaev, A.P., Kim, B.K., Szpunar, J.A., Baró, M.D., Langdon, T.G., Mater. Sci. Eng. A391, 377 (2005).CrossRefGoogle Scholar
Xu, C., Horita, Z., Langdon, T.G., Acta Mater. 56, 5168 (2008).CrossRefGoogle Scholar
Xu, C., Dobatkin, S.V., Horita, Z., Langdon, T.G., Mater. Sci. Eng. A500,170 (2009).Google Scholar
Wongsa-Ngam, J., Kawasaki, M., Zhao, Y., Langdon, T.G., Mater. Sci. Eng. A528, 7715 (2011).CrossRefGoogle Scholar
Kawasaki, M., Alhajeri, S.N., Xu, C., Langdon, T.G., Mater. Sci. Eng. A529, 345 (2011).Google Scholar
Kaczmar, J.W., Pietrzak, K., Włosiński, W., J. Mater. Proc. Tech. 106, 58 (2000).Google Scholar
Miracle, D.B., Comp. Sci. Tech. 65, 2526 (2005).Google Scholar
Chawla, N., Chawla, K.K., Metal Matrix Composites (Springer, New York) (2006).CrossRefGoogle Scholar
Chawla, N. and Chawla, K.K., J. Mater. Sci. 41, 913 (2006).Google Scholar
Valiev, R.Z., Islamgaliev, R.K., Kuzmina, N.F., Li, Y., Langdon, T.G., Scipta Mater. 40, 117 (1998).CrossRefGoogle Scholar
Cavaliere, P., Cerri, E., Evangelista, E., Mater. Sci. Eng. A387-389, 857 (2004).CrossRefGoogle Scholar
Sabirov, I., Kolednik, O., Valiev, R.Z., Pippan, R., Acta Mater. 53, 4919 (2005).Google Scholar
Sabirov, I. and Pippan, R., Scripta Mater. 52, 1293 (2005).Google Scholar
Jamaati, R., Amirkhanlou, S., Toroghinejad, M., Niroumand, B., Mater. Sci. Eng. A528, 2143 (2011).CrossRefGoogle Scholar
Sabbaghianrad, S., Kawasaki, M., Langdon, T.G., J. Mater. Sci. 47, 7789 (2012).CrossRefGoogle Scholar
Sabbaghianrad, S. and Langdon, T.G., Mater. Sci. Eng. A596, 52 (2014).Google Scholar
Sabbaghianrad, S. and Langdon, TG, J. Mater. Sci. 50(12), 4357 (2015).Google Scholar
Figueiredo, R.B., Cetlin, P.R., Langdon, T.G., Mater. Sci. Eng. A528, 8198 (2011).Google Scholar
Figueiredo, R.B., Pereira, P.H.R., Aguilar, M.T.P., Cetlin, P.R., Langdon, T.G., Acta Mater. 60, 3190 (2012).Google Scholar
Kawasaki, M. and Langdon, T.G., Mater. Sci. Eng. A498, 341 (2008).Google Scholar
Valiev, R.Z., Ivanisenko, Y.V., Rauch, E.F., Baudelet, B., Acta Mater. 44, 4705 (1996).Google Scholar
Wetscher, F., Vorhauer, A., Stock, R., Pippan, R., Mater. Sci. Eng. A387-389, 809 (2004).Google Scholar
Wetscher, F., Pippan, R., Sturm, S., Kauffmann, F., Scheu, C., Dehm, G., Metall. Mater. Trans. 37A, 1963 (2006).Google Scholar
Vorhauer, A. and Pippan, R., Scripta Mater. 51, 921 (2004).Google Scholar
Edalati, K., Fujioka, T., Horita, Z., Mater. Trans. 50, 44 (2009).CrossRefGoogle Scholar
Loucif, A., Figueiredo, R.B., Baudin, T., Brisset, F., Langdon, T.G., Mater. Sci. Eng. A527, 4864 (2010).CrossRefGoogle Scholar
Edalati, K. and Horita, Z., Mater. Trans. 51, 1051 (2010).CrossRefGoogle Scholar
Kawasaki, M., J. Mater. Sci. 49, 18 (2014).Google Scholar