Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-19T07:35:39.507Z Has data issue: false hasContentIssue false

Material Removal Simulation in Sawing Processes of Photovoltaic Silicon

Published online by Cambridge University Press:  04 February 2019

F. Wallburg*
Affiliation:
Leipzig University of Applied Sciences, Faculty of Mechanical and Energy Engineering, Leipzig, Germany Fraunhofer Center for Silicon Photovoltaics CSP, 06120Halle (Saale), Germany TU Bergakademie Freiberg, Institute of Mechanics and Fluid Dynamics, 09599Freiberg, Germany
M. Kuna
Affiliation:
TU Bergakademie Freiberg, Institute of Mechanics and Fluid Dynamics, 09599Freiberg, Germany
S. Schoenfelder
Affiliation:
Leipzig University of Applied Sciences, Faculty of Mechanical and Energy Engineering, Leipzig, Germany Fraunhofer Center for Silicon Photovoltaics CSP, 06120Halle (Saale), Germany
*
Get access

Abstract

The wafering of thin silicon substrates is done by wire sawing technology. In this work a numerical model for the investigation of microstructural mechanisms like cracking and damage evolution during the sawing process is presented. A three-dimensional finite element model representing the phase transformation properties of silicon is validated by loading curves from nano-indentation experiments. By using cohesive zone finite elements, the crack lengths as well as crack initiation depths can be quantified and compared with the experimental results in terms of the maximum depth of subsurface damage.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Moeller, H. J., Funke, C., Rinio, M., Scholz, S., Thin Solid Films 487, 179-187 (2005).CrossRefGoogle Scholar
International Technology Roadmap for Photovoltaic (ITRPV) Ninth Edition 2018: 2017 Results, Available at:http://www.itrpv.net/Reports/Downloads/ (accessed 08 November 2018).Google Scholar
Cook, R. F., Pharr, G. M., J. Am. Ceram. Soc. 73 (4), 787-817 (1990).CrossRefGoogle Scholar
Domnich, V., Gogotsi, Y., Rev. Adv. Mater. Sci. 3, 1-36 (2002).Google Scholar
Petersen, K. E., Proc. of the IEEE 70 (5), 420-457 (1982).CrossRefGoogle Scholar
Hu, J., Merkle, L., Menoni, C., Spain, I., Phys. Rev. B 34 (7), 4679-4684 (1986).CrossRefGoogle Scholar
Hennig, R. G., Wadehra, A., Driver, K. P., Parker, W. D., Umrigar, C. J., Wilkins, J. W., Phys. Rev. B 82 (1), 014101 (2010).CrossRefGoogle Scholar
Budnitzki, M., Kuna, M., Int. J. Solids Struct. 106–107, 294-304 (2017).CrossRefGoogle Scholar
Gerk, A. P., Tabor, D., Nature 271 (5647), 732-733 (1978).CrossRefGoogle Scholar
Budnitzki, M., Kuna, M., J. Mech. Phys. Solids 95, 64-91 (2016).CrossRefGoogle Scholar
Hall, J. J., Phys. Rev. 161 (3), 756-761 (1967).CrossRefGoogle Scholar
Mujica, A., Rubio, A., Munoz, A., Needs, R. J., Rev. Mod. Phys. 75 (3), 863-912 (2003).CrossRefGoogle Scholar
Bierwisch, C., Weber, B., Kuebler, R., Moseler, M., Kleer, G.. Proc. of the 23rd European photovoltaic solar energy conference and exhibition, 1104-1108 (2008).Google Scholar
Bierwisch, C., Kuebler, R., Kleer, G., Moseler, M., Philos. Trans. R. Soc. A 369 (1945), 2422- 2430 (2011).CrossRefGoogle Scholar
Wagner, T., Moeller, H. J., Proc. of the 23rd European photovoltaic solar energy conference and exhibition, 1315-1320 (2008).Google Scholar
Liedke, T., Kuna, M., Wear 304 (1–2), 77-82 (2013).CrossRefGoogle Scholar
Liedke, T., Kuna, M., Int. J. Mach. Tool Manufact. 51 (9), 711-720 (2011).Google Scholar
Nassauer, B., Hess, A., Kuna, M., Int. J. Solids. Struct. 51 (14), 2656-2665 (2014).CrossRefGoogle Scholar
Wu, H., Melkote, S. N., J. Eng. Mater. Technol. 134 (4), 041011 (2012).CrossRefGoogle Scholar
Nassauer, B., Kuna, M., Comp. Part. Mech. 2, 63-71 (2015).CrossRefGoogle Scholar
Ebrahimi, F., Kalwani, L., Mater. Sci. Eng. A 268 (1-2), 116-126 (1999).CrossRefGoogle Scholar
Rickhey, F., Lee, J. H., Lee, H., J. Mat. Des. 107, 393-405 (2016).Google Scholar
Lee, J. H., Gao, Y. F., Johanns, K. E., Pharr, G. M., Acta Mater. 60, 5448-5467 (2012).CrossRefGoogle Scholar
Oliver, W. C., Pharr, G. M., J. Mater. Res. 7 (6), 1564-1583 (1992).CrossRefGoogle Scholar
Secco d’ Aragona, F., J. Electrochem. Soc. 119, 948-951 (1972).CrossRefGoogle Scholar
Olijnyk, H., Sikka, S. K., Holzapfel, W. B., Phys. Lett. A 103 (3), 137-140 (1984).CrossRefGoogle Scholar
Yin, M. T., Cohen, M. L., Phys. Rev. B 26 (10), 5668 (1982).CrossRefGoogle Scholar
Hopcroft, M. A., Nix, W. D., Kenny, T. W., J. Microelectromech. Syst. 19 (2), 229-238 (2010).CrossRefGoogle Scholar
Meyer, K., Master’s Thesis, TU Clausthal, 2015.Google Scholar