Published online by Cambridge University Press: 20 July 2020
We investigate whether first-principles calculations with an improved description of electronic correlations can explain the large magnetic moments and the strong magnetocrystalline anisotropy in the ferromagnetic compound UGa2. The correlations are treated within a static mean-field approximation DFT+U combining the density functional theory (DFT) with an onsite Hubbard interaction U. We find that DFT+U improves the agreement of the magnetic moments with the experiment compared to DFT but worsens the theoretical description of the magnetocrystalline anisotropy.