Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-10T19:50:24.479Z Has data issue: false hasContentIssue false

“Inward Growth” Corrosion and Its Growth Mechanism in Ancient Chinese Bronzes

Published online by Cambridge University Press:  27 January 2020

Bingjie Li
Affiliation:
School of Physics and Technology, and MOE Key Laboratory of Artificial Micro- and Nano-structures, Wuhan University, Wuhan 430072, China Center for Electron Microscopy, Wuhan University, Wuhan 430072, China
Xudong Jiang
Affiliation:
Hubei Provincial Museum, Wuhan 430077, China
Yin Tu
Affiliation:
Huangzhou Museum, Huanggang 438000, China
Qiang Fu
Affiliation:
Center for Electron Microscopy, Wuhan University, Wuhan 430072, China
Chunxu Pan*
Affiliation:
School of Physics and Technology, and MOE Key Laboratory of Artificial Micro- and Nano-structures, Wuhan University, Wuhan 430072, China Center for Electron Microscopy, Wuhan University, Wuhan 430072, China
*
*Author to whom correspondence should be addressed. E-mail: [email protected].
Get access

Abstract

We divide the corrosion products on ancient bronzes into two categories, i.e., "inward growth" and “outward growth” corrosions. Several selected Chinese ancient bronzes with the "inward growth” corrosion are studied; and their chemical compositions, microstructures and morphologies are characterized systematically. According to the results, it is found that the “inward growth” corrosion can be further divided into three types, i.e., "noble patina", "noble-like patina" and "lamellar peeling patina". We propose that the growth mechanism of the “inward growth” corrosion is that the corrosion initiates at and develops along α-Cu phase. Furthermore, the effect of alloy Sn content on the “inward growth” corrosion is also studied.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

These authors contributed equally to this work.

References

REFERENCES

Constantinides, I., Appl Surf Sci . 189, 90-101 (2002).CrossRefGoogle Scholar
Hubei Institute of Cultural Relics and Archaeology, Chu Tomb in Wangshan Sand Mound of Jiangling. (Culture Relics Publishing House, Beijing, 1996) p.65.Google Scholar
Chase, W. T., Ars Orientalis 11, 215-258 (1979).Google Scholar
Hutchison, M.J., Scully, R., Eelectrochim Acta 283, 806-817 (2018).10.1016/j.electacta.2018.06.125CrossRefGoogle Scholar
Li, B., Jiang, X., Wu, R., Wei, B., Hu, T., Pan, C., Appl Surf Sci. 455, 724-728 (2018).CrossRefGoogle Scholar
Robbiola, L., Blengino, M., Fiaud, C., Corros Sci . 40, 2083-2111 (1998).CrossRefGoogle Scholar
Taube, M., King, A.H., Chase, W. T., Phase Transit 81, 217-232 (2008).CrossRefGoogle Scholar
Gettens, R. J., J Chem Educ. 67-71 (1951).Google Scholar
Jiao, D., Acta Archaeol. Sin. 01, 41-60+112-126 (1959).Google Scholar
Feeney, R., Schmidt, S.L., Chadam, P. S., Ortoleva, P., The Journal of Chemical Physics 78, 1293-1311 (1983).CrossRefGoogle Scholar
Ross, M. F., The Journal of Chemical Physics 60, 3458-3465 (1974).10.1063/1.1681583CrossRefGoogle Scholar
Organ, R.M., Stud Conserv. 8, 1-9 (1963).Google Scholar
Scott, D.A., Journal of the American Institute for Conservation 29, 193-206 (2013).10.1179/019713690806046064CrossRefGoogle Scholar
Scott, D.A., Journal of the American Institute for Conservation 33, 1-23 (1994).CrossRefGoogle Scholar
Scott, D.A., Stud Conserv. 45, 39-53 (2000).Google Scholar
Robbiola, L.: Caractérisation de l’altération de bronzes archéologiques enfouis à partir d’un corpus d’objets de l’age du Bronze. Mécanismes de corrosion, Université Pierre et Marie Curie-Paris VI1990.Google Scholar
Liu, Y., Huang, F., Hong, G., Acta Archaeol. Sin. 2, 227-274 (2001).Google Scholar
Liao, L, Huang, Z, Pan, C., Chen, G., Hu, Y., Archaeology, 8, 69-76 (2008). (In Chinese)Google Scholar
Scott, D.A., Copper and Bronze in Art: Corrosion, Colorants, Conservation. (Getty publications, Los Angeles, 2002) p.281-301.Google Scholar
Robbiola, L., Portier, R., J Cult Herit. 7, 1-12 (2006).10.1016/j.culher.2005.11.001CrossRefGoogle Scholar
Chase, W.T., Conservation and Scientific Research 85-117 (1994).Google Scholar
Birkefeld, A., Schulin, R., Nowack, B., Environ Pollut. 145, 554-561 (2007).CrossRefGoogle Scholar
Rooney, C.P., McLaren, R.G., Condron, L.M., Environ Pollut. 149, 149-157, (2007).10.1016/j.envpol.2007.01.009CrossRefGoogle Scholar
Pan, C.X., Liao, L.M., Hu, Y.L., Advanced Materials Research 26-28, 523-526 (2007).CrossRefGoogle Scholar
Scott, D.A., Metallography and Microstructure of Ancient and Historic Metals. (Getty publications, Los Angeles, 1991) p.25-29.Google Scholar
Han, R., Sun, S., Li, X., Qian, W.:, Journal of University of Science and Technology Beijing 24, 219-230 (2002).Google Scholar
Li, B., Jiang, X., Pan, C., Materials Review 31, 138-143 (2017).Google Scholar
Wang, N., He, J., Sun, S., Xiao, L., Sciences of Conservation and Archaeology 19, 45-49 (2007).Google Scholar