Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T13:09:16.587Z Has data issue: false hasContentIssue false

In Vitro Osteogenic, Angiogenic, and Inflammatory Effects of Copper in β-Tricalcium Phosphate

Published online by Cambridge University Press:  10 January 2019

Weiguo Han
Affiliation:
Molecular, Cellular and Biomedical Sciences Department, University of New Hampshire, Rudman Hall, 46 College Road, Durham, NH03824
Haley Cummings
Affiliation:
Department of Mechanical Engineering, Northern Illinois University, 590 Garden Road, DeKalb, IL60115
Murali Krishna Duvuuru
Affiliation:
Department of Mechanical Engineering, Northern Illinois University, 590 Garden Road, DeKalb, IL60115
Sarah Fleck
Affiliation:
Department of Mechanical Engineering, Northern Illinois University, 590 Garden Road, DeKalb, IL60115
Sahar Vahabzadeh*
Affiliation:
Department of Mechanical Engineering, Northern Illinois University, 590 Garden Road, DeKalb, IL60115
Sherine F. Elsawa
Affiliation:
Molecular, Cellular and Biomedical Sciences Department, University of New Hampshire, Rudman Hall, 46 College Road, Durham, NH03824
*
Get access

Abstract

Tricalcium phosphate (TCP) is a promising candidate in bone and dental tissue engineering applications. Though osteoconductive, its low osteoinductivity is a major concern. Trace elements addition at low concentrations are known for their impact on not only the osteoinductivity, but also physical and mechanical properties of TCP. Copper (Cu) is known for its role in vascularization and angiogenesis in biological systems. Here, we studied the effects of Cu addition on phase composition, porosity, microstructure and in vitro interaction with osteoblast (OB) cells. Our results showed that Cu stabilized the TCP structure, while no significant effect of microstructure and porosity was found. Cu at concentrations less than 1 wt.% did not have any cytotoxic effect while decreased proliferation of OBs were observed at 1 wt.% Cu doped TCP. Addition of Cu upregulated collagen type I and vascular endothelial growth factor expression in a dose dependent manner at early time-point. Furthermore, Cu reduced inflammatory gene expression by human osteoblasts. These findings show that addition of Cu to TCP may provide a therapeutic strategy that can be applied in bone tissue engineering applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Clarke, B., Clin. J. Am. Soc. Nephrol. CJASN 3, S131 (2008).CrossRefGoogle Scholar
LeGeros, R.Z., Chem. Rev. 108, 4742 (2008).CrossRefGoogle Scholar
Ravaglioli, A. and Krajewski, A., Bioceramics: Materials. Properties. Applications, 1st ed. (Springer, 1991).Google Scholar
Samavedi, S., Whittington, A.R., and Goldstein, A.S., Acta Biomater. 9, 8037 (2013).CrossRefGoogle Scholar
Bose, S., Fielding, G., Tarafder, S., and Bandyopadhyay, A., Trends Biotechnol. 31, 594 (2013).CrossRefGoogle Scholar
Takahashi, Y., Yamamoto, M., and Tabata, Y., Biomaterials 26, 4856 (2005).CrossRefGoogle Scholar
Vahabzadeh, S., Hack, V.K., and Bose, S., J. Biomed. Mater. Res. B Appl. Biomater. 105, 391 (2017).CrossRefGoogle Scholar
Vahabzadeh, S. and Bose, S., Ann. Biomed. Eng. 45, 819 (2017).CrossRefGoogle Scholar
Banerjee, S.S., Tarafder, S., Davies, N.M., Bandyopadhyay, A., and Bose, S., Acta Biomater. 6, 4167 (2010).CrossRefGoogle Scholar
Tarafder, S., Davies, N.M., Bandyopadhyay, A., and Bose, S., Biomater. Sci. 1, 1250 (2013).CrossRefGoogle Scholar
Turski, M.L. and Thiele, D.J., J. Biol. Chem. 284, 717 (2009).CrossRefGoogle Scholar
Kim, B.-E., Nevitt, T., and Thiele, D.J., Nat. Chem. Biol. 4, 176 (2008).CrossRefGoogle Scholar
Linder, M.C., Biochemistry of Copper (Springer Science & Business Media, 1991).CrossRefGoogle Scholar
Burch, R.E., Hahn, H.K., and Sullivan, J.F., Clin. Chem. 21, 501 (1975).Google Scholar
Harris, Z.L., Takahashi, Y., Miyajima, H., Serizawa, M., MacGillivray, R.T., and Gitlin, J.D., Proc. Natl. Acad. Sci. U. S. A. 92, 2539 (1995).CrossRefGoogle Scholar
Arredondo, M. and Núñez, M.T., Mol. Aspects Med. 26, 313 (2005).CrossRefGoogle Scholar
Wu, C., Zhou, Y., Xu, M., Han, P., Chen, L., Chang, J., and Xiao, Y., Biomaterials 34, 422 (2013).CrossRefGoogle Scholar
Barralet, J., Gbureck, U., Habibovic, P., Vorndran, E., Gerard, C., and Doillon, C.J., Tissue Eng. Part A 15, 1601 (2009).CrossRefGoogle Scholar
Ewald, A., Käppel, C., Vorndran, E., Moseke, C., Gelinsky, M., and Gbureck, U., J. Biomed. Mater. Res. A 100, 2392 (2012).Google Scholar
Roy, M., DeVoe, K., Bandyopadhyay, A., and Bose, S., Mater. Sci. Eng. C Mater. Biol. Appl. 32, 2145 (2012).CrossRefGoogle Scholar
Welch, J.H. and Gutt, W., J. Chem. Soc. Resumed 4442 (1961).Google Scholar
Katsumi, Yoshida, Hideki, Hyuga, Naoki, Kondo, Hideki, Kita, Miho, Sasaki, Masanori, Mitamura, Kazuaki, Hashimoto, and Yoshitomo, Toda, J. Am. Ceram. Soc. 89, 688 (2005).Google Scholar
Bamberger, C.E., Specht, E.D., and Anovitz, L.M., J. Am. Ceram. Soc. 80, 3133 (1997).CrossRefGoogle Scholar
Gaetke, L.M. and Chow, C.K., Toxicology 189, 147 (2003).CrossRefGoogle Scholar
Rath, S.N., Brandl, A., Hiller, D., Hoppe, A., Gbureck, U., Horch, R.E., Boccaccini, A.R., and Kneser, U., PloS One 9, e113319 (2014).Google Scholar
Lin, Y., Xiao, W., Bal, B.S., and Rahaman, M.N., Mater. Sci. Eng. C Mater. Biol. Appl. 67, 440 (2016).CrossRefGoogle Scholar
Schamel, M., Bernhardt, A., Quade, M., Würkner, C., Gbureck, U., Moseke, C., Gelinsky, M., and Lode, A., Mater. Sci. Eng. C 73, 99 (2017).CrossRefGoogle Scholar
Zavan, B., Ferroni, L., Gardin, C., Sivolella, S., Piattelli, A., and Mijiritsky, E., Mater. Basel Switz. 10, (2017).Google Scholar
Gardin, C., Bressan, E., Ferroni, L., Nalesso, E., Vindigni, V., Stellini, E., Pinton, P., Sivolella, S., and Zavan, B., Stem Cells Dev. 21, 767 (2011).CrossRefGoogle Scholar
O’Connor, E.M. and Durack, E., J. Nutr. Intermed. Metab. 7, 8 (2017).CrossRefGoogle Scholar
Golub, E.E. and Boesze-Battaglia, K., Curr. Opin. Orthop. 18, 444 (2007).CrossRefGoogle Scholar
Sila-Asna, M., Bunyaratvej, A., Maeda, S., Kitaguchi, H., and Bunyaratavej, N., Kobe J. Med. Sci. 53, 25 (2007).Google Scholar
Ashammakhi, N., Reis, R.L., and Chiellini, E., Topics in Tissue Engineering (Oulu University, Oulu, Finland, 2007).Google Scholar
Kong, Y.Y., Boyle, W.J., and Penninger, J.M., Immunol. Cell Biol. 77, 188 (1999).CrossRefGoogle Scholar
Kohli, S.S. and Kohli, V.S., Indian J. Endocrinol. Metab. 15, 175 (2011).CrossRefGoogle Scholar
Nasi, S., So, A., Combes, C., Daudon, M., and Busso, N., Ann. Rheum. Dis. 75, 1372 (2016).CrossRefGoogle Scholar
Abbas, S., Zhang, Y.-H., Clohisy, J.C., and Abu-Amer, Y., Cytokine 22, 33 (2003).CrossRefGoogle Scholar
Gilbert, L., He, X., Farmer, P., Boden, S., Kozlowski, M., Rubin, J., and Nanes, M.S., Endocrinology 141, 3956 (2000).CrossRefGoogle Scholar
Croes, M., Öner, F.C., van Neerven, D., Sabir, E., Kruyt, M.C., Blokhuis, T.J., Dhert, W.J.A., and Alblas, J., Bone 84, 262 (2016).CrossRefGoogle Scholar
Supplementary material: PDF

Han et al. supplementary material

Han et al. supplementary material 1

Download Han et al. supplementary material(PDF)
PDF 362.6 KB