Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-19T09:19:34.400Z Has data issue: false hasContentIssue false

Improved Enhancement Factor for SERS using Broad Ion Beam Induced Self-organized Gold Nanocones

Published online by Cambridge University Press:  19 February 2019

Bhaveshkumar Kamaliya
Affiliation:
IITB-Monash Research Academy, Indian Institute of Technology Bombay, Mumbai400076, India; Department of Physics, Indian Institute of Technology Bombay, Mumbai400076, India; Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC3800, Australia;
Rakesh G. Mote*
Affiliation:
Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai400076, India;
Mohammed Aslam
Affiliation:
Department of Physics, Indian Institute of Technology Bombay, Mumbai400076, India;
Jing Fu
Affiliation:
Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC3800, Australia;
*
*Corresponding Author. E-mail: [email protected]
Get access

Abstract

Sparsely distributed and self-organized gold-nanocones are fabricated by broad argon ion beam sputtering on the gold surface with grazing incident angle. The rotation of the sample with respect to the vertical axis has found to influence the morphology of the obtained nanostructures. Ion beam irradiation of the sample leads to formation of nanoripples when the sample is held stationary, otherwise nanocones are formed if the sample is rotated during irradiation. A hybrid gold-nanocone/graphene/gold-nanohole based surface-enhanced Raman scattering (SERS) sensor is proposed and shown to exhibit an enhancement factor of 109 via finite-difference time-domain (FDTD) simulations.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Li, X., Zhu, J., and Wei, B., Chem. Soc. Rev. 45, 3145 (2016).CrossRefGoogle Scholar
Zhan, Z., Liu, L., Wang, W., Cao, Z., Martinelli, A., Wang, E., Cao, Y., Chen, J., Yurgens, A., and Sun, J., Adv. Optical Mater. 4, 2021 (2016).CrossRefGoogle Scholar
Zheng, P., Shi, X., Curtin, K., Yang, F., and Wu, N., Mater. Res. Express 4, 055017 (2017).CrossRefGoogle Scholar
Yoon, J.K., Kim, K., and Shin, K.S., J. Phy. Chem. C 113, 1769 (2009).CrossRefGoogle Scholar
D’Andrea, C., Fazio, B., Gucciardi, P.G., Giordano, M.C., Martella, C., Chiappe, D., Toma, A., Buatier de Mongeot, F., Tantussi, F., Vasanthakumar, P., Fuso, F., and Allegrini, M., J. Phys. Chem. C 118, 8571 (2014).CrossRefGoogle Scholar
Banik, M., Nag, A., El-Khoury, P.Z., Rodriguez Perez, A., Guarrotxena, N., Bazan, G.C., and Apkarian, V.A., J. Phys. Chem. C 116, 10415 (2012).CrossRefGoogle Scholar
Zhu, X., Shi, L., Schmidt, M.S., Boisen, A., Hansen, O., Zi, J., Xiao, S., and Mortensen, N.A., Nano Lett. 13, 4690 (2013).CrossRefGoogle Scholar
Blackie, E.J., Le Ru, E.C., and Etchegoin, P.G., J. Am. Chem. Soc. 131, 14466 (2009).CrossRefGoogle Scholar
Le Ru, E.C., Blackie, E., Meyer, M., and Etchegoin, P.G., J. Phys. Chem. C 111, 13794 (2007).CrossRefGoogle Scholar
Paria, D., Roy, K., Singh, H.J., Kumar, S., Raghavan, S., Ghosh, A., and Ghosh, A., Adv. Mater. 27, 1751 (2015).CrossRefGoogle Scholar
Das, G., Morett, M., Torre, B., Allione, M., Giugni, A., and Fabrizio, E.D., Biochem. Anal. Biochem. 06, (2017).CrossRefGoogle Scholar
Bradley, R.M. and Harper, J.M., J. Vac. Sci. Technol. A 6, 2390 (1988).CrossRefGoogle Scholar
Repetto, D., Giordano, M.C., Martella, C., and Buatier de Mongeot, F., Appl. Surf. Sci. 327, 444 (2015).CrossRefGoogle Scholar
Kontio, J.M., Husu, H., Simonen, J., Huttunen, M.J., Tommila, J., Pessa, M., and Kauranen, M., Opt. Lett. 34, 1979 (2009).CrossRefGoogle Scholar
Shearer, C.J., Slattery, A.D., Stapleton, A.J., Shapter, J.G., and Gibson, C.T., Nanotechnology 27, 125704 (2016).CrossRefGoogle Scholar
Qin, Z., Taylor, M., Hwang, M., Bertoldi, K., and Buehler, M.J., Nano Lett. 14, 6520 (2014).CrossRefGoogle Scholar
Falkovsky, L.A., J. Phys. Conf. Ser. 129, 012004 (2008).CrossRefGoogle Scholar