Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-23T12:49:10.359Z Has data issue: false hasContentIssue false

Impact of Monovalent Counter-ions on the Conformation of Flexible Polyelectrolytes Having Different Molecular Architectures

Published online by Cambridge University Press:  11 February 2016

Alexandros Chremos
Affiliation:
Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, U.S.A.
Jack F. Douglas*
Affiliation:
Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, U.S.A.
*
Get access

Abstract

We explore the impact of monovalent counter-ions on the molecular conformation of highly charged flexible polyelectrolytes for a range of molecular topologies (linear chains, stars, and unknotted and trefoil rings) by molecular dynamics simulations that include an explicit solvent having short range interaction with the polyelectrolyte. In particular, we investigate how the counter-ions near the polyelectrolytes with variable mass influence the average molecular shape. We also characterize the interfacially “bound” counter-ions by calculating the time-averaged number of interfacial counter-ions, as well as the degree to which the polyelectrolytes wrap around the counter-ions by calculating the number of contacts between the counter-ions and the polyelectrolyte.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Yethiraj, A., J. Phys. Chem. B 113, 1539 (2009).CrossRefGoogle Scholar
Dobrynin, A. V. and Rubinstein, M., Prog. Polym. Sci. 30, 1049 (2005).CrossRefGoogle Scholar
Prabhu, V. M., Curr Opin. Colloid Interface Sci. 10, 2 (2005).CrossRefGoogle Scholar
Manning, G. S., J. Chem. Phys. 51, 924 (1969).CrossRefGoogle Scholar
Manning, G. S., J. Chem. Phys. 51, 3249 (1969).CrossRefGoogle Scholar
Stigter, D., Biophysical J. 69, 380 (1995).CrossRefGoogle Scholar
Deshkovski, A., Obukhov, S., and Rubinstein, M., Phys. Rev. Lett. 86, 2341 (2001).CrossRefGoogle Scholar
Stevens, M. J. and Kremer, K., J. Chem. Phys. 103, 1669 (1995).CrossRefGoogle Scholar
Chu, J. C. and Mak, C. H., J. Chem. Phys. 110, 2669 (1999).CrossRefGoogle Scholar
Limbach, H. J. and Holm, C., J. Chem. Phys. 114, 9674 (2001).CrossRefGoogle Scholar
Liu, S. and Muthukumar, M., J. Chem. Phys. 116, 9975 (2002).CrossRefGoogle Scholar
Ullner, M. and Woodward, C. E., Macromolecules 35, 1437 (2002).CrossRefGoogle Scholar
Lo, T. S., Khusid, B., and Koplik, J., Phys. Rev. Lett. 100, 128301 (2008).CrossRefGoogle Scholar
Carrillo, J.-M. Y. and Dobrynin, A. V., Macromolecules 44, 5798 (2011).CrossRefGoogle Scholar
Mansfield, M. L. and Douglas, J. F., Macromolecules 41, 5422 (2008).CrossRefGoogle Scholar
Mansfield, M. L. and Douglas, J. F., J. Chem. Phys. 139, 044901 (2013).CrossRefGoogle Scholar
Schuler, B., et al., Proc. Natl. Acad. Sci. U.S.A. 102, 2754 (2005).CrossRefGoogle Scholar
Deserno, M., Holm, C., and May, S., Macromolecules 33, 199 (2000).CrossRefGoogle Scholar
Deserno, M. and Holm, C., Mol. Phys. 100, 2941 (2002).CrossRefGoogle Scholar
Groot, R. D., J. Chem. Phys. 95, 9191 (1991).CrossRefGoogle Scholar
Hubbard, J. B. and Douglas, J. F., Phys. Rev. E 47, 2983 (1993).CrossRefGoogle Scholar
Mansfield, M. L., Douglas, J. F., and Garboczi, E. J., Phys. Rev. E 64, 061401 (2001).CrossRefGoogle Scholar
Kauffman, L. H., Knots and Physics (World Scientific, 1991).CrossRefGoogle Scholar
Chremos, A. and Douglas, J. F., J. Chem. Phys. 143, 111104 (2015).CrossRefGoogle Scholar
Mansfield, M. L., Tsortos, A., and Douglas, J. F., J. Chem. Phys. 143, 124903 (2015).CrossRefGoogle Scholar
Jeong, C. and Douglas, J. F., J. Chem. Phys. 143, 144905 (2015).CrossRefGoogle Scholar
Zhang, Y., Douglas, J. F., Ermi, B. D., and Amis, E. J., J. Chem. Phys. 114, 3299 (2000).CrossRefGoogle Scholar