Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T05:50:34.878Z Has data issue: false hasContentIssue false

Hydrostatic pressure effect on new BiS2 based Bi4O4S3 and ReO/FBiS2 (Re = La, Pr, Nd, Sm) Superconductors

Published online by Cambridge University Press:  05 February 2016

Arumugam Sonachalam*
Affiliation:
Centre for High Pressure Research, School of Physics, Bharathidasan University Tiruchirappalli, Tamil Nadu-620 024, India.
Kalai Selvan Ganesan
Affiliation:
Centre for High Pressure Research, School of Physics, Bharathidasan University Tiruchirappalli, Tamil Nadu-620 024, India.
*
Get access

Abstract

Discovery of superconductivity in BiS2 layers based systems has attracted tremendous interest of both experimentalists and theoreticians from condensed matter physics community. In this article, a review of our high pressure studies on BiS2 based superconductors is given. The pressure effects on magnetic, transport properties and superconducting transitions are discussed for different types of doped and undoped BiS2-based compounds such as Bi4O4S3 and ReO/FBiS2 (Re = rare-earth). Pressure tends to decrease the magnetic transition temperature in the undoped or only slightly doped compounds. The superconducting Tc increases with low pressure for under doped BiS2 based compounds, remains approximately constant for optimal doping, and decreases linearly in the overdoped range. Under pressure, the semiconducting behavior in the normal state is suppressed markedly and monotonically, whereas the evolution of Tc is nonlinear, the superconductivity in the BiS2 layer favors the Fermi surface at the boundary between the semiconducting and metallic behaviors. However, strong suppression of the semiconducting and induced metallic behavior without doping in ReO/FBiS2 suggests that the Fermi surface is located in the vicinity of some instability. Furthermore, notable properties under pressure in the BiS2 family are reported. The prospects for raising Tc in this family are proposed on the basis of experimental and theoretical studies.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Schilling, J.S., in: Proceedings of the NATO Advanced Research Workshop Frontiers of High Pressure Research II: Application of High Pressure to Low Dimensional Novel Electronic Materials, 10–15 (2001) June, Kluwer, Boston, pp. 345.Google Scholar
Chu, C.W., Diatschenko, V., Phys. Rev. Lett. 41, 572 (1978).Google Scholar
McMillan, W.L., Phys. Rev. 167, 331 (1968).Google Scholar
Chu, C.W., History of the original ideas and basic discoveries, in: Newman, H.B., Ypsilantis, T. (Eds.), Particle Physics, Plenum, New York, p. 793 (1996).Google Scholar
Gao, L., Xue, Y.Y., Chen, F., Xiong, Q., Meng, R.L., Ramirez, D., Chu, C.W., Eggert, J.H., Mao, H.K., Phys. Rev. B 50, 4260 (1994).Google Scholar
Kamihara, Y., Watanabe, T., Hirano, M., and Hosono, H., J. Am.Chem. Soc. 130, 3296 (2008).Google Scholar
Chen, X. H., Wu, T., Wu, G., Liu, R. H., Chen, H., and Fang, D. F., Nature 453, 761 (2008).Google Scholar
Ren, Z. A., Lu, W., Yang, J., Yi, W., Shen, X. L., Li, Z. C., Che, G. C., Dong, X. L., Sun, L. L., Zhou, F., and Zhao, Z. X., Chin. Phys. Lett. 25, 2215 (2008).Google Scholar
Chen, G. F., Li, Z., Wu, D., Li, G., Hu, W. Z., Dong, J., Zheng, P., Luo, J. L. and Wang, N. L., Phys. Rev. Lett. 100 247002 (2008).CrossRefGoogle Scholar
Ren, Z. A., Yang, J., Lu, W., Yi, W., Che, G. C., Dong, X. L., Sun, L. L. and Zhao, Z. X., Mater. Res. Innov. 12, 1 (2008).Google Scholar
Chen, Y.L., Cui, Y.J., Su, C.Y., Zhou, D.J., Cheng, C.H., Zhao, Y., J Supercond Nov Mag,25, 125 (2012).Google Scholar
Drozdov, A. P., Eremets, M. I., and Troyan, I. A., arXiv:1412.0460 (2014).Google Scholar
Drozdov, A.P., Eremets, M. I., Troyan, I. A., Ksenofontov, V., Shylin, S. I., arXiv:1506.08190 (2014).Google Scholar
Drozdov, A.P., Eremets, M. I., Troyan, I. A., Ksenofontov, V., Shylin, S. I., Nature 525, 73 (2015).Google Scholar
Duan, D., Liu, Y., Tian, F., Li, D., Huang, X., Zhao, Z., Yu, H., Liu, B., Tian, W., and Cui, T., Sci. Rep. 4, 6968 (2014).CrossRefGoogle Scholar
Mizuguchi, Y., Fujihisa, H., Gotoh, Y., Suzuki, K., Usui, H., Kuroki, K., Demura, S., Takano, Y., Izawa, H., and Miura, O., Phys. Rev. B. 86, 220510 (2012).Google Scholar
Singh, S. K., Kumar, A., Gahtori, B., Kirtan, S., Sharma, G., Patnaik, S., and Awana, V. P. S., J. Am. Chem. Soc. 134, 16504 (2012).Google Scholar
Li, B., Xing, Z. W., and Huang, G. Q., Europhys. Lett. 101, 47002 (2013).Google Scholar
Jha, R., Kumar, A., Singh, S. K., and Awana, V. P. S., J. Sup. and Novel Mag. 26, 499 (2013).Google Scholar
Jha, R., Kumar, A., Singh, S. K., and Awana, V. P. S., J. Appl. Phys. 113, 056102 (2013).Google Scholar
Deguchi, K., Mizuguchi, Y., Demura, S., Hara, H., Watanabe, T., Denholme, S. J., Fujioka, M., Okazaki, H., Ozaki, T., Takeya, H., Yamaguchi, T., Miura, O., and Takano, Y., Europhys. Lett. 101 17004 (2013).Google Scholar
Kotegawa, H., Tomita, Y., Tou, H., Izawa, H., Mizuguchi, Y., Miura, O., Demura, S., Deguchi, K., andTakano, Y., J. Phys. Soc. Jpn. 81, 103702 (2012).Google Scholar
Awana, V. P. S., Kumar, A., Jha, R., Kumar, S., Pal, A., Shruti, , Saha, J., and Patnaik, S., Solid State Commun. 157, 21 (2013).Google Scholar
Demura, S., Mizuguchi, Y., Deguchi, K., Okazaki, H., Hara, H., Watanabe, T., Denholme, S. J., Fujioka, M., Ozaki, T., Fujihisa, H., Gotoh, Y., Miura, O., Yamaguchi, T., Takeya, H., and Takano, Y., J. Phys. Soc. Jpn. 82, 033708 (2013).Google Scholar
Mizuguchi, Y., Demura, S., Deguchi, K., Takano, Y., Fujihisa, H., Gotoh, Y., Izawa, H., and Miura, O., J. Phys. Soc. Jpn. 81, 114725 (2012).Google Scholar
Xing, J., Li, S., Ding, X., Yang, H., and Wen, H.-H., Phys. Rev. B. 86, 214518 (2012).Google Scholar
Yazici, D., Huang, K., White, B. D., Chang, A. H., Friedman, A. J., and Maple, M. B., Philos. Mag. 93, 673 (2012).Google Scholar
Yazici, D., Huang, K., White, B. D., Chang, A. H., Friedman, A. J., and Maple, M. B., Philos. Mag. 93, 673 (2013).Google Scholar
Lin, X., Ni, X., Chen, B., Xu, X., Yang, X., Dai, J., Li, Y., Yang, X., Luo, Y., Tao, Q., Cao, G., and Xu, Z., Phys. Rev. B. 87, 020504 (2013).Google Scholar
Yazici, D., Huang, K., White, B. D., Jeon, I., Burnett, V. W., Friedman, A. J., Lum, I. K., Nallaiyan, M., Spagna, S., and Maple, M. B., Phys. Rev. B. 87, 174512 (2013).Google Scholar
Krzton-Maziopa, A., Guguchia, Z., Pomjakushina, E., Pomjakushin, V., Khasanov, R., Luetkens, H., Biswas, P., Amato, A., Keller, H., and Conder, K., J. Phys.: Condens. Matter,26 215702 (2014).Google Scholar
Thakur, Gohil, Kalai Selvan, G., Zeba, Haque, Gupta, Laxmi, Samal, Saroj, Sonachalam, Arumugam, and Ganguli, Ashok, Journal of Inorg chem., 54 ,1076 (2015).Google Scholar
Selvan Kalai, G., Kanagaraj, M., Esakki Muthu, S., Jha, R., Awana, V.P.S., Arumugam, S., Phys. Status Solidi Rapid Res. Lett. 7, 510 (2013).Google Scholar
Wolowiec, C.T., Yazici, D., White, B.D., Huang, K., Maple, M.B., Phys. Rev. B. 88 064503 (2013).Google Scholar
Wolowiec, C.T., White, B.D., Jeon, I., Yazici, D., Huang, K., Maple, M.B., J. Phys.: Condens. Matter 25, 422201 (2013).Google Scholar
Tomita, T., Ebata, M., Soeda, H., Takahashi, H., Fujihisa, H., Gotoh, Y., Mizuguchi, Y., Izawa, H., Miura, O., Demura, S., Deguchi, K., Takano, Y.J. Phys. Soc. Jpn. 83, 063704 (2014).Google Scholar
Yildirim, T., Phys. Rev. B. 87, 020506 (2013).Google Scholar
Usui, H., Suzuki, K., Kuroki, K., Phys. Rev. B. 86, 220501 (2012).Google Scholar
Wang, X.B., Nie, S.M., Wang, H.P., Zheng, P., Wang, P., Dong, T., Weng, H.M., Wang, N.L., Phys. Rev. B. 90, 054507 (2014).Google Scholar
Kuroki, K., Onari, S., Arita, R., Usui, H., Tanaka, Y., Kontani, H., Aoki, H., Phys. Rev. Lett. 101, 087004 (2008).Google Scholar
Sathish, I.C., Feng, H.L., Shi, Y., Yamaura, K., J. Phys. Soc. Jpn. 82, 074703 (2013).Google Scholar
Phelan, W.A., Wallace, D.C., Arpino, K.E., Neilson, J.R., Livi, K.J., Seabourne, C.R., Scott, A.J., McQueen, T.M., J. Am. Chem. Soc. 135, 5372 (2013).Google Scholar
Liu, J., Fang, D., Wang, Z., Xing, J., Du, Z., Li, S., Zhu, X., Yang, H., Wen, H.-H., Europhys. Lett. 106, 67002 (2014).Google Scholar
Nagao, M., Miura, A., Demura, S., Deguchi, K., Watauchi, S., Takei, T., Takano, Y., Kumada, N., Tanaka, I., Solid State Commun. 178, 33 (2014).Google Scholar
Nagao, M., Demura, S., Deguchi, K., Miura, A., Watauchi, S., Takei, T., Takano, Y., Kumada, N., Tanaka, I., J. Phys. Soc. Jpn. 82, 113701 (2013).Google Scholar
Kalai Selvan, G., Bhoi, D., Arumugam, S., Midya, A., Mandal, P., Supercond Sci Technol., 28, 015009 (2015).Google Scholar
Igawa, K., J. Phys. Soc. Jpn. 78, 025001 (2009).Google Scholar
Pourovskii, L., Europhys. Lett. 84, 37006 (2008).Google Scholar
Stockert, U., Leps, N., Wang, L., Behr, G., Wurmehl, S., Buchner, B., and Klingeler, R.. Phys.Rev.B. 86, 144407 (2012).Google Scholar
Canfield, P.C., Budko, S.L., Ni, N., Kreyssig, A., Goldman, A.I., McQueeney, R.J., Torikachvili, M.S., Argyriou, D.N., Luke, G., Yu, W., Physica C. 469, 404 (2009).Google Scholar
Kotegawa, H., Sugawara, H., Tou, H., J. Phys. Soc. Jpn. 78, 013709 (2009).Google Scholar
Ganguli, C., Matsubayashi, K., Ohgushi, K., Uwatoko, Y., Kanagaraj, M., Arumugam, S., Mater. Res. Bull, 48, 4329 (2013).Google Scholar