Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-06T01:05:53.523Z Has data issue: false hasContentIssue false

Hybrid improper antiferroelectricity—New insights for novel device concepts

Published online by Cambridge University Press:  11 December 2020

Xue-Zeng Lu*
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois60208, USA
James M. Rondinelli
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois60208, USA
*
Correspondence Email: [email protected]
Get access

Abstract

Antiferroelectrics have been studied for decades, with most research focused on PbZrO3 or related compounds obtained through chemical substitution. Although there are several important antiferroelectrics found in AVO4 (A=Dy, Bi), orthorhombic ABC semiconductors (e.g., MgSrSi) and hydrogen-bonded antiferroelectric materials, experimentally demonstrated antiferroelectrics are far less common. Furthermore, antiferroelectrics have potential applications in energy storage and for strain and force generators. In recent years, hybrid improper ferroelectrics have been intensively studied, along which the hybrid improper antiferroelectric phase was proposed and demonstrated in (001) Ruddlesden−Popper A3B2O7 thin films from first-principles calculations. Later, the hybrid improper antiferroelectric phase was discovered experimentally in several Ruddlesden−Popper perovskites in bulk. Across the hybrid improper ferroelectric-antiferroelectric phase transition, several interesting phenomena were also predicted. In this snapshot review, we describe recent progress in hybrid improper antiferroelectricity.

Type
Review Article
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lines, M.E. and Glass, A.M.. Principles and Applications of Ferroelectrics and Related Materials, Cambridge University Press (1977).Google Scholar
Mitsui, T.. Ferroelectrics and antiferroelectrics, in Springer Handbook of Condensed Matter and Materials Data, Part 4, Springer-Verlag, pp. 903938 (2005).CrossRefGoogle Scholar
Kittel, C.. Phys. Rev. 82, 729 (1951).CrossRefGoogle Scholar
Tolédano, P. and Guennou, M.. Phys. Rev. B 94, 014107 (2016).CrossRefGoogle Scholar
Rabe, K. M., in Functional Metal Oxides: New Science and Novel Applications, edited by Ogale, S. and Venkateshan, V., Wiley, New York (2013).Google Scholar
Liu, H. and Dkhil, B.. J. Kristallogr. 226, 163 (2011).CrossRefGoogle Scholar
Tan, X., Ma, C., Fredrick, J., Beckman, S., and Webber, K. G.. J. Am. Ceram. Soc. 94, 4091 (2011).CrossRefGoogle Scholar
Unoki, H. and Sakudo, T.. Phys. Rev. Lett. 38, 137 (1977).CrossRefGoogle Scholar
Bennett, J. W., Garrity, K. F., Rabe, K. M., and Vanderbilt, D.. Phys. Rev. Lett. 110, 017603 (2013).CrossRefGoogle Scholar
Flerov, I. N. and Mikhaleva, E. A.. Phys. Solid State 50, 478484 (2008).CrossRefGoogle Scholar
Lasave, J., Koval, S., Dalal, N. S., and Migoni, R. L.. Phys. Rev. Lett. 98, 267601 (2007).CrossRefGoogle Scholar
Kobayashi, K., Horiuchi, S., Ishibashi, S., Murakami, Y., and Kumai, R.. J. Am. Chem. Soc. 140, 38423845 (2018).CrossRefGoogle Scholar
Horiuchi, S., Kagawa, F., Hatahara, K., Kobayashi, K., Kumai, R., Murakami, Y., and Tokura, Y.. Nat. Commun. 3, 1308 (2012).CrossRefGoogle Scholar
Shirane, G., Sawaguchi, E.. and Takagi, Y.. Phys. Rev. 84, 476 (1951).CrossRefGoogle Scholar
Känzig, W.. Ferroelectrics and Antiferroelectrics (Academic Press, New York, 1957).Google Scholar
Lu, X.-Z. and Rondinelli, J. M.. Nat. Mater. 15, 951 (2016).CrossRefGoogle Scholar
Benedek, N. A. and Fennie, C. J.. Phys. Rev. Lett. 106, 107204 (2011).CrossRefGoogle Scholar
Harris, A.B.. Phys. Rev. B 84, 064116 (2011).CrossRefGoogle Scholar
Benedek, N. A., Mulder, A. T., and Fennie, C. J.. J. Solid State Chem. 195, 11 (2012).CrossRefGoogle Scholar
Mulder, A. T., Benedek, N. A., Rondinelli, J. M., and Fennie, C. J.. Adv. Funct. Mater. 23, 4810-4820 (2013).Google Scholar
Benedek, N.A., Rondinelli, J.M., Djani, H., Ghosez, Ph., and Lightfoot, P.. Dalton Trans. 44, 10543-10558 (2015).CrossRefGoogle Scholar
Van Aken, B. B., Palstra, T. T. M., Filippetti, A., and Spaldin, N. A.. Nat. Mater. 3, 164-170 (2004).CrossRefGoogle Scholar
Bousquet, E., Dawber, M., Stucki, N., Lichtensteiger, C., Hermet, P., Gariglio, S., Triscone, J.-M., and Ghosez, P.. Nature 452, 732-736 (2008).CrossRefGoogle Scholar
Oh, Y. S., Luo, X., Huang, F.-T., Wang, Y., Cheong, S.-W.. Nat. Mater. 14, 407413 (2015).CrossRefGoogle Scholar
Senn, M. S., Bombardi, A., Murray, C. A., Vecchini, C., Scherillo, A., Luo, X., and Cheong, S. W.. Phys. Rev. Lett. 114, 035701 (2015).CrossRefGoogle Scholar
Liu, X. Q., Wu, J. W., Shi, X. X., Zhao, H. J., Zhou, H. Y., Qiu, R. H., Zhang, W. Q., and Chen, X. M.. Appl. Phys. Lett. 106, 202903 (2015).CrossRefGoogle Scholar
Lu, X.-Z. and Rondinelli, J. M., Adv. Funct. Mater. 27, 1604312 (2017).CrossRefGoogle Scholar
Yoshida, S., Fujita, K., Akamatsu, H., Hernandez, O., Gupta, A.S., Brown, F.G., Padmanabhan, H., Gibbs, A.S., Kuge, T., Tsuji, R., Murai, S., Rondinelli, J.M., Gopalan, V., and Tanaka, K.. Adv. Funct. Mater. 28, 1801856 (2018).CrossRefGoogle Scholar
Yoshida, S., Akamatsu, H., Tsuji, R., Hernandez, O., Padmanabhan, H., Gupta, A.S., Gibbs, A.S., Mibu, K., Murai, S., Rondinelli, J.M., Gopalan, V., Tanaka, K., and Fujita, K.. J. Am. Chem. Soc. 140, 15690-15700 (2018).CrossRefGoogle Scholar
Lu, X.-Z. and Rondinelli, J. M., Physical Review Materials 2, 054409, (2018).CrossRefGoogle Scholar
Pitcher, M.J., Mandal, P., Dyer, M.S., Alaria, J., Borisov, P., Niu, H., Claridge, J.B., and Rosseinsky, M.J.. Science 347, 420-424 (2015).CrossRefGoogle Scholar
Wang, Y., Huang, F.-T., Luo, X., Gao, B., and Cheong, S.-W.. Advanced Materials, 29, 1601288 (2017).CrossRefGoogle Scholar
Schlom, D.G., Chen, L.-Q., Fennie, C.J., Gopalan, V., Muller, D.A., Pan, X., Ramesh, R., and Uecker, R.. MRS Bull. 39 , 118-130 (2014).CrossRefGoogle Scholar
Rondinelli, J. M., May, S. J., and Freeland, J. W.. MRS Bulletin 37, 261-270 (2012).CrossRefGoogle Scholar
Perdew, J.P., Ruzsinszky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Constantin, L.A., Zhou, X., and Burke, K.. Phys. Rev. Lett. 100, 136406 (2008).CrossRefGoogle Scholar
Shannon, R. D.. Acta Crystallogr. A 32, 751 (1976).CrossRefGoogle Scholar
Huang, F.-T., Gao, B., Kim, J.-W., Luo, X., Wang, Y., Chu, M.-W., Chang, C.-K., Sheu, H.-S., and Cheong, S.-W.. npj Quantum Materials 1, 16017 (2016).CrossRefGoogle Scholar
Zhu, T., Khalsa, G., Havas, D. M., Gibbs, A. S., Zhang, W., Halasyamani, P. S., Benedek, N. A., and Hayward, M. A.. Chem. Mater. 30, 8915-8924 (2018).10.1021/acs.chemmater.8b04136CrossRefGoogle Scholar
Zhang, R., Abbett, B. M., Read, G., Lang, F., Lancaster, T., Tran, T. T., Halasyamani, P. S., Blundell, S. J., Benedek, N. A., and Hayward, M. A.. Inorg. Chem. 55, 8951-8960 (2016).CrossRefGoogle Scholar
Battle, P. D., Millburn, J. E., and Rosseinsky, M. J.. Chem. Mater. 9, 3136-3143 (1997).CrossRefGoogle Scholar
Sánchez-Andújar, M. and Señarís-Rodríguez, M. A.. Z. anorg. allg. Chem. 633, 1890-1896 (2007).CrossRefGoogle Scholar
Hickey, P. J., Knee, C. S., Henry, P. F., and Weller, M. T.. Phys. Rev. B 75, 024113 (2007).CrossRefGoogle Scholar
Samaras, D., Collomb, A., and Joubert, J. C.. J. Solid State Chem. 7, 337-348 (1973).CrossRefGoogle Scholar
Nowadnick, E. A. and Fennie, Craig J.. Phys. Rev. B 94, 104105 (2016).CrossRefGoogle Scholar
Balachandran, P. V., Puggioni, D., and Rondinelli, J. M.. Inorg. Chem. 53, 336-348 (2014).CrossRefGoogle Scholar
Jain, P., Dalal, N. S., Toby, B. H., Kroto, H. W., and Cheetham, A. K.. J. Am. Chem. Soc. 130, 32, 10450-10451 (2008).CrossRefGoogle Scholar
Boström, H. L. B., Senn, M. S., and Goodwin, A. L.. Nature Commun. 9, 2380 (2018).CrossRefGoogle Scholar
Djani, H., McCabe, E.E., Zhang, W., Halasyamani, P.S., Feteira, A., Bieder, J., Bousquet, E., and Ghosez, P.. Phys. Rev. B 101, 134113 (2020).CrossRefGoogle Scholar
Uppuluri, R., Akamatsu, H., Gupta, A.S., Wang, H., Brown, C.M., Agueda Lopez, K.E., Alem, N., Gopalan, V., and Mallouk, T.E.. Chem. Mater. 31, 44184425 (2019).CrossRefGoogle Scholar
Wu, Z., Liu, X., Ji, C., Li, L., Wang, S., Peng, Y., Tao, K., Sun, Z., Hong, M., and Luo, J.. J. Am. Chem. Soc. 141, 38123816 (2019).CrossRefGoogle Scholar
Ter-Oganessian, N. V. and Sakhnenko, V. P.. J. Phys.: Condens. Matter 32, 275401 (2020).Google Scholar
Cao, T., Wang, D., Geng, D.-S., Liu, L.-M., and Zhao, J.. Phys. Chem. Chem. Phys. 18, 7156 (2016).CrossRefGoogle Scholar
Noborisaka, J., Nishiguchi, K., and Fujiwara, A.. Sci. Rep. 4, 6950 (2014).CrossRefGoogle Scholar
Lu, N., Guo, H., Li, L., Dai, J., Wang, L., Mei, W.-N., Wu, X., and Zeng, X. C.. Nanoscale 6, 2879 (2014).CrossRefGoogle Scholar
Zhang, Z. Y., Si, M. S., Wang, Y. H., Gao, X. P., Sung, D., Hong, S., and He, J.. J. Chem. Phys. 140, 174707 (2014).CrossRefGoogle Scholar